
IOT INTEGRATION, ADVERSARIAL ATTACKS, AND THREAT EXPLANATIONS IN

PROVENANCE-BASED INTRUSION DETECTION SYSTEMS

by

Kunal Mukherjee

APPROVED BY SUPERVISORY COMMITTEE:

Kangkook Jee, Chair

Murat Kantarcioğlu, Co-Chair

Bhavani Thuraisingham

Feng Chen

Copyright © 2024

Kunal Mukherjee

All rights reserved

To

the best parents in the world, Mr. Kingsuk Mukherjee and Dr. Sharmistha Mukherjee,

my eternal headache, my brother, Mr. Spandan Mukherjee,

loving grandparents, Late Dr. Sisir Kumar Mukherjee and Mrs. Anju Mukherjee,

and Dr. Sati Prasad Acharya and Mrs. Subra Acharya.

IOT INTEGRATION, ADVERSARIAL ATTACKS, AND THREAT EXPLANATIONS IN

PROVENANCE-BASED INTRUSION DETECTION SYSTEMS

by

KUNAL MUKHERJEE, BS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2025

ACKNOWLEDGMENTS

This dissertation would not have been possible without the unwavering support of my family

and friends.“Family” in this context encompasses not just my blood relations but also the

incredible people who entered my life and found a place in my heart.

First and foremost, I extend my deepest gratitude to my advisors, Dr. Kangkook Jee and

Dr. Murat Kantarcioğlu. Their mentorship, guidance, and endless reservoir of knowledge has

been instrumental in shaping both my research and personal growth. I owe them a profound

debt of thanks. I would also like to express my appreciation to Dr. Bhavani Thuraisingham

and Dr. Feng Chen for serving on my committee and providing invaluable feedback that

helped refine my dissertation.

To my friend and colleague, Josh Wiedemeier—thank you for your emotional support, crit-

ical feedback, brainstorming sessions, and thoughtful proofreading. Your camaraderie has

been a cornerstone in my PhD journey, and I am grateful to have had you as a close confi-

dant throughout this process. I would also be remiss if I didn’t acknowledge the countless

discussions and collaborations with Tianhao Wang, James Wei, Guangze Zu, Jonathan Wu,

Nicholas Baker, Kaerah Lopez, Jerry Teng, Elliot Tarbet, David Wank, Ahad Jawaid, Jae-

hyun Park, Dr. Sangsoo Ko, Simon Klancher, Zarish Mahboob, and other amazing members

of our research group. I consider myself incredibly fortunate to have worked alongside such

brilliant minds.

I would like to extend my sincere thanks to my teammates at Zillow Group, Inc. for an

enriching internship experience. I want to offer a special mention to Saeid Balaneshin (my

manager), Zachary Harrison (my mentor), Dr. Ondrej Linda, Kelsey Juraschka, Jack Gib-

bons, Dr. Kai Liu, Giuliano Janson, and Dr. Faraz Moghimi. Their guidance and support

made my time at Zillow both productive and unforgettable. I also wish to thank my first in-

dustrial mentors from Ciholas, Inc., including Mike Ciholas, Justin Bennett (my manager),

v

Jawad AlDamini (my mentor), Tim DeBaillie, Daniela Fuentes, and Mason Blankenship.

They helped me understand the intricacies of industrial research and laid the foundation for

my professional journey.

A special thanks is due to my friends who made my graduate years so memorable. Another

special mention to Dr. Partha De, for being a friend, guide and philosopher during these

five years and other senior UTD CS PhDs who successfully navigated the PhD journey and

shared their experiences with me: Dr. Chiradeep Roy, Dr. Kinjal Basu, and Dr. Sagnik

Dakshit: thank you for the late-night conversations and unwavering support. My heartfelt

thanks also goes to my best friends Navanil Sengupta, Rohan Paul, Novonil Das, Abhigyan

Sinha, and Pritom Das Radheshyam for all the insightful (and sometimes not-so-insightful)

discussions that made these years unforgettable. I must also thank Princy Doshi, Swati

Anwesha, Kongkona Borah, Amisha Srivastava, Souvik Das, Suprovo Ghosh, Antareep Gogoi

and Pramit Ghosh for being the rock-solid support system that I could always count on.

My journey into academia began with the encouragement of many influential figures, such as

my undergraduate advisor, the late Dr. Dick Blandford, as well as Dr. Katherine Chandler,

Dr. Christina Howe, Dr. Robert Morse, and Mark Randall, who inspired me to pursue grad-

uate studies and ultimately a doctorate. A special thanks to my highschool mentors who

developed the virtue of hard work and perseverance: Sheila Huff (Principal), Kaye Pickett,

Paula Boenigk (who taught me the value of critical thinking), Denise Dunlap, Amy Bonen-

berger, Michele Hays, Niti Moore, Melanie Preston, Andrew Weinzapfel, Michael Schauss,

and Shane Burkhart.

I also want to acknowledge Dallas Bongs Cricket Club and AnkurDFW for creating a wel-

coming and supportive community for international students like myself. Being a part of

these clubs allowed me to unwind, play my favorite sport (cricket) and stay connected to my

Bengali roots, all while pursuing my academic dreams.

vi

Finally, I am eternally grateful to my family. My parents, Kingsuk Mukherjee and Dr.

Sharmistha Mukherjee, have been my guiding lights. Thank you to my brother, Spandan

Mukherjee, and my extended family— (my paternal grandparents) the late Dr. Sisir Kumar

and Anju Mukherjee, (my maternal grandparents) Dr. Sati Prasad and Subra Acharya, (my

maternal aunts) Kanistha Acharya and Dr. Mongistha Acharya, (my paternal aunt) Dr.

Kakoli Mukherjee, and my cousins, Arjun Chakraborty, and Bharsha Acharya—their love

and encouragement means the world to me. Words cannot express how much they all mean

to me. I wish my paternal grandfather, the late Dr. Sisir Kumar Mukherjee, could have

been here to see this moment. From swimming across the Ganges as a Bangladeshi Hindu

refugee in India to earning his doctorate, he laid the foundation for this achievement. I stand

on the shoulders of such an enigma; we made it, and I hope this makes him proud. Last, a

“thank you” to myself, Kunal Mukherjee, for persevering and not giving up—even when the

situation seemed long and uncertain. Sometimes, all we can do is keep swimming.

November 2024

vii

IOT INTEGRATION, ADVERSARIAL ATTACKS, AND THREAT EXPLANATIONS IN

PROVENANCE-BASED INTRUSION DETECTION SYSTEMS

Kunal Mukherjee, PhD
The University of Texas at Dallas, 2025

Supervising Professors: Kangkook Jee, Chair

Murat Kantarcioğlu, Co-Chair

System provenance analysis has become the predominant approach for defending against

sophisticated attackers. System provenance analysis captures causal and informational flow

dependencies by correlating telemetry data across key system resources such as processes,

files, and network sockets. These dependencies are efficiently represented as system prove-

nance graphs, which are directed, heterogeneous, and multi-attributed. These system prove-

nance graphs can be used by Provenance-based Intrusion Detection Systems (PIDSs) to train

adaptive behavioral Machine Learning (ML) models for intrusion detection tasks. PIDSs can

effectively thwart Advanced Persistent Threat (APT) actors and Fileless Malware writers

since they can measure the program behavioral deviations. Graph Neural Networks (GNNs)

are the de-facto standard for learning from graphs. Consequently, GNN-based PIDS can

detect zero-day and mimicry attacks by measuring deviations in program behavior.

Despite their undeniable advantages, modern PIDSs still face several open problems: (1)

current system provenance analysis techniques are designed primarily for resource-rich en-

vironments, leaving IoT ecosystems vulnerable; (2) the resilience of PIDS against dedicated

adversaries have not been fully examined; (3) GNN-based PIDS operate as black-box models,

lacking transparency in their detection decisions.

viii

This dissertation addresses these three key challenges in system provenance analysis: ex-

tending provenance analysis to IoT environments, improving robustness against adversarial

attacks, and enhancing the explainability of GNN-based PIDS.

First, we introduce ProvIoT, a federated edge-cloud security framework that brings PIDSs

to resource-constrained IoT devices. ProvIoT leverages federated learning to minimize

network and computational overhead while maintaining high accuracy in detecting stealthy

attacks, even in diverse real-world environments.

Next, we present ProvNinja, an adversarial testing framework designed to evaluate the

robustness of PIDSs against realistic evasive attacks. ProvNinja generates adversarial

attack variants that closely mimic benign system behaviors, allowing it to effectively test

the resilience of State-of-The-Art (SOTA) PIDSs. Our experiments reveal vulnerabilities in

current security models, leading to reduced detection rates in realistic attack scenarios.

Finally, we develop ProvExplainer, an explainability framework for GNN-based PIDSs to

provide interpretable, security-focused explanations. ProvExplainer projects the GNN’s

decision boundaries onto the interpretable surrogate model’s feature space (e.g., discrimi-

native subgraph patterns). By integrating with SOTA GNN explainers, ProvExplainer

improves both precision and recall in explaining stealthy attacks (i.e., APTs campaigns and

Fileless malware) detections, offering a transparent and verifiable tool for security operations.

Together, these contributions offer scalable, robust, and explainable security solutions for

increasingly interconnected and vulnerable digital infrastructure.

ix

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . viii

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

CHAPTER 1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Dissertation Outline . 4

CHAPTER 2 BACKGROUND . 6

2.1 System Provenance Overview . 6

2.2 System Provenance Data Schema . 7

2.3 System Provenance Graph . 7

2.4 System Provenance-based Intrusion Detection System (PIDS) 8

2.5 Graph Neural Network (GNN)-based PIDS 11

2.6 Explainable ML in Security . 11

2.7 Ground-truth Verification in System Provenance 12

2.8 Fileless Malware . 13

2.9 Advanced Persistent Threat (APT) Campaigns 17

CHAPTER 3 PRIVACY PRESERVING FEDERATED PIDS FOR IOT – PROVIOT 20

3.1 Problem Statement . 20

3.2 Threat Model . 20

3.3 ProvIoT Overview . 21

3.3.1 Federated Architecture: Local Brain 22

3.3.2 Federated Architecture: Cloud Brain 24

3.4 Federated Detection in IoT Domain . 25

3.4.1 Provenance Graph Building and Subgraph (Path) Selection 26

3.4.2 Document-to-Neural Embedding Model 28

3.4.3 Federated PIDS: AutoEncoder . 28

3.5 Evaluation . 29

x

3.5.1 Dataset . 30

3.5.2 Experimental Protocol . 35

3.5.3 Fileless Malware Detection . 36

3.5.4 APT Campaign Detection . 38

3.5.5 Federated Learning Benefits . 40

3.5.6 ProvIoT Overhead . 41

3.6 Related Works . 42

CHAPTER 4 EVASIVE ATTACK GENERATION FRAMEWORK – PROVNINJA 45

4.1 Problem Statement . 45

4.2 Threat Model . 46

4.3 ProvNinja Overview . 47

4.4 Program Profile Generation – Frequency History of Events 48

4.5 Identifying Conspicuous (or Rare) Events . 49

4.6 Feature Space Evasion . 50

4.6.1 Evasive System Events (or Gadget) Finder 52

4.6.2 Applying Gadget Chains . 52

4.6.3 Camouflaging Gadgets . 53

4.7 Problem Space Evasion . 56

4.7.1 Problem Space Constraints . 57

4.7.2 System Provenance Filter Rules . 58

4.8 Evaluation . 61

4.8.1 Evaluation Methodology . 62

4.8.2 Evaluation Datasets . 63

4.8.3 Dataset Statistics . 66

4.8.4 Baseline Performance of ML Detectors 68

4.8.5 Feature Space Evasion . 69

4.8.6 White-box and Blind Threat Models 72

4.8.7 Problem Space Realization . 73

4.8.8 Surrogate Dataset Effectiveness . 77

xi

4.8.9 Transferability Evaluation . 78

4.9 Related Works . 79

CHAPTER 5 EXPLAINING GNN-BASED PIDS – PROVEXPLAINER 81

5.1 Problem Statement . 81

5.2 Threat Model . 81

5.3 ProvExplainer Overview . 82

5.4 Graph Structural Features . 84

5.4.1 Initial Compromise . 86

5.4.2 Establishing a Foothold . 86

5.4.3 Deepen Access . 87

5.4.4 Lateral Movement . 87

5.4.5 Look, Learn, and Remain . 88

5.5 Creating Surrogate Decision Trees (DTs) using Graph Structural Features . 88

5.6 Interpreting GNN-based IDS Detections Using Surrogate DTs 89

5.7 Combining SOTA GNN Explanation Methods with ProvExplainer 90

5.8 Evaluation . 91

5.8.1 Evaluation Protocols . 91

5.8.2 Evaluation Tasks . 93

5.8.3 Evaluation Datasets . 95

5.8.4 Dataset Statistics . 97

5.8.5 Graph Structural Feature Evaluation 101

5.8.6 Ablation Study . 103

5.8.7 ProvExplainer vs. SOTA Explainers 107

5.9 Case Studies . 110

5.9.1 FiveDirections: Browser Extension 111

5.9.2 FiveDirections: Copykatz . 113

5.9.3 Trace: Phishing E-mail . 116

CHAPTER 6 FUTURE WORK AND CONCLUSION 119

6.1 Future Research Directions . 119

xii

6.1.1 Real-Time Prevention . 119

6.1.2 Automated Evasive Attack Generation 119

6.1.3 Defense Against Evasive Attacks . 120

6.1.4 Environmental Dependencies of Evasive Attacks 120

6.1.5 Adversarial Manipulation of Graph Features 121

6.1.6 Support for Fine-Grained Detection Tasks 121

6.2 Conclusion . 121

REFERENCES . 124

BIOGRAPHICAL SKETCH . 136

CURRICULUM VITAE

xiii

LIST OF FIGURES

2.1 FritzFrog malware impersonating nginx web-server. 15

2.2 Enterprise APT scenario. 18

2.3 APT attack on Docker supply chain. 19

3.1 The federated framework of ProvIoT. 21

3.2 The detection pipeline of the Local Brain. 25

3.3 Example causal paths extracted from a provenance graph, G1, generated for pro-
cess, P1. Using the extracted causal paths the sentences are formed for a docu-
ment, D1. 27

3.4 Example detection workload for graph G1 in Figure 3.3. After the document D1

is formed, the causal sentences in the document are converted into feature vectors
(fv) using doc2vec model. Then the fv are fed into the AutoEncoder to get the
reconstructed fv. Sentences are flagged as anomalous if the mean squared error
between the original fv and the reconstructed fv is above a threshold determined
during training. 28

3.5 Attacker injects and creates Fileless malware as a child process of motion process.
The provenance graph captures the attacker’s behavior which can be used for
detection. 34

3.6 High detection accuracy of ProvIoT against APT attacks using federated learn-
ing, some rare exceptions which are discussed in §3.5.4. 38

3.7 (a) Federated performance is similar to centralized performance on the same
data. (b) Increasing the number of clients increases performance by increasing
the amount of data in the system. 40

3.8 On RaspberryPi 4B, Local Brain’s processing and prediction uses <10% CPU and
65MB memory. Model training takes about 375MB memory and <10% CPU. . . 41

4.1 ProvNinja framework. 47

4.2 Change in regularity score due to gadget usage. 52

4.3 Events added and F1 score vs gadget length. In each evaluation scenario, bars
represent number of additional events whereas solid lines are for F-1 score trends. 71

4.4 Realization effort for larger graphs takes more time, but there is a diminishing
result since the number of rare edges and gadgets are limited for a particular
attack stage. 75

4.5 Attack transferability visualization. Each cell contains the F1 score of the defense
model (columns) that is measured against the evasive attacks crafted against a
target model (rows). Lower values (lighter colors) indicate better evasion. 78

xiv

5.1 ProvExplainer framework. 82

5.2 Structural Graph Features. Squares are processes and circles are files. Write
edges are blue, read edges are green, execute edges are red, and process creation
edges are orange. 85

5.3 Distribution of nine subgraphs (Table 5.1) in different datasets. B means benign
and A means anomaly. 85

5.4 Representative graphs of the different categories for python (linux), powershell.exe
and firefox.exe. 95

5.5 Effectiveness of graph model explainers at identifying documented entities (§5.8.1),
measured using precision and recall. 107

5.6 Effectiveness of graph model explainers at identifying documented entities (§5.8.1),
measured using precision and recall as more nodes are included in the explanation.
ProvExplainer outperforms SOTA explainers on anomaly detection tasks and
remains competitive in classification tasks. 109

5.7 FiveDirections: the attacker exploits the target via a malicious Firefox extension.111

5.8 FiveDirections: the attacker gains C2 connections and installs Copykatz through
a Firefox exploit. 114

5.9 Trace: after an employee clicks on a phishing link, Firefox installs multiple
Trojans to exfiltrate sensitive data. 116

xv

LIST OF TABLES

2.1 Node and egdge types for in-house system provenance with associated attributes. 7

2.2 Top 10 impersonation targets for Fileless malware. 16

3.1 The IoT applications chosen for evaluation as well as their usage examples. . . . 30

3.2 Number of vertices and edges used to create a benign profile for IoT applications
and system programs . 31

3.3 Number of vertices and edges used to create IoT Malware and APT attack profile 31

3.4 APT TTPs for cyber-killchain stages . 32

3.5 ProvIoT is highly effective in distinguishing IoT malware impersonating as be-
nign system process as evident from high F1 scores. Grey cells contain low F1
score to indicate indistinguishable malware behavior for system process, discussed
in §3.5.3. 37

3.6 Federated attack scenarios result for FritzFrog attack 38

4.1 Example gadgets with their normalized regularity score and problem space re-
jection reason. Regularity scores are normalized from 0 to 10, with a high score
indicating higher regularity. 54

4.2 APT attack stages first showing the original attack and then the attack using
gadget chain along with their regularity score. 55

4.3 presents the detection results for the baseline, randomly perturbed, and Ninja
attacks, with a lower F-1 score indicating better evasion. We replace rare edges
with a random sequence of programs in random perturbations and with evasive
gadgets in Ninja attacks. We display differences from the baseline values inside
parentheses. 63

4.4 Benign graph size for system programs. 67

4.5 ProvNinja evasion for ShadeWatcher (Zengy et al., 2022). 70

4.6 ProvNinja’s performance under White-box, Black-box and Blind threat model,
evaluated for two configurations of Blind (ProvNinja) and Blind (random per-
turbation). 72

4.7 Number of unviable candidates removed by each recommendation §4.7.2. 74

4.8 The detection results of the attacks generated from the benign, surrogate, and
random dataset (lower numbers indicate better evasion). Rare edges and the gad-
get chains are found using the data. The random data is generated by intermixing
DARPA TC datasets. 77

5.1 Summary of program behavior patterns. 83

xvi

5.2 Datasets used for classification: python(linux), powershell.exe and, firefox.exe. 98

5.3 APT and Fileless Malware graph statistics. 98

5.4 Classification dataset graph statistics. 99

5.5 Surrogate Decision Trees (DTs) have high agreement with the decisions of GNN
measured using the WMA F1 score. Grey cells low agreement with the GNN
(discussed in §5.8.5). 101

5.6 Agreement of surrogate DTs with the GAT model across different feature subsets.
The best feature subsets are highlighted. 103

5.7 WMA F1 of surrogate DTs approximating a GraphSAGE model across different
feature subsets. The best feature subsets are bolded. 104

xvii

CHAPTER 1

INTRODUCTION

1.1 Overview

System provenance analysis has become a cornerstone of modern cybersecurity (i.e., en-

terprise and supply-chain security), providing detailed tracking of system events to defend

against increasingly sophisticated cyber threats (FireEye, 2020; Malwarebytes, 2022; Eddy,

2024; Telychko, 2024). System provenance (King and Chen, 2003a) captures causal and

temporal relationships between system operations, such as process executions, file modifi-

cations, and network connections. These relationships are most effectively represented as

graphs. These provenance graphs offer a rich, fine-grained view of system behaviors, making

them invaluable for detecting and thwarting advanced cyber-attacks (i.e., APT campaigns

and Fileless malware). Provenance graphs enable Intrusion Detection Systems (IDSs) to

effectively model dynamic program behaviors, making it easier to distinguish malicious ac-

tivities and backtrack from the Point-Of-Interest (POI) of the attack to its source.

Provenance analysis transforms raw system event logs into directed, heterogenous multi-

attributed graphs, where nodes represent system entities (i.e., processes, files, and network

sockets), and edges represent their interactions (e.g., READ, WRITE, and CREATE). By analyz-

ing patterns in these graphs, security systems can detect deviations from normal behavior,

flagging them as potential threats. Unlike static detection mechanisms, which rely on sig-

natures or heuristics, Provenance-based Intrusion Detection Systems (PIDSs) offer a more

dynamic and comprehensive approach, identifying novel, stealthy attacks based on behav-

ioral analysis. These capabilities are particularly important in noisy environments where

traditional defenses fail, such as against long running APT campaigns or Fileless Malware

masquerading as benign system programs.

Despite their promise, provenance-based solutions face three key challenges, including

scalability in computationally limited IoT environments, resilience against adversarial ma-

1

nipulation, and interpretability of security alerts. The following works extend the domain of

provenance analysis to address these challenges.

In ProvIoT, we explore the applicability of PIDS to the IoT domain, where resource

constraints such as limited CPU, memory, and bandwidth make traditional provenance so-

lutions impractical. IoT devices, ranging from wearables to autonomous vehicles, are now

deployed at a massive scale, making them frequent targets of data theft, cryptomining, and

denial of service (DoS). To bypass legacy security systems in IoT, attackers are increasingly

adopting stealthy techniques such as Fileless malware or Living-of-the-land malware (Harpaz,

2020). While provenance graphs are powerful for tracking behaviors, processing them is com-

putationally challenging on the limited hardware capacity typical of IoT devices.

To address this challenge, ProvIoT introduces a federated edge-cloud collaborative se-

curity architecture tailored for IoT environments. This system optimizes event collection

and summarization using an in-memory database. It extracts critical subgraphs, or causal

paths, from the full provenance graph, further reducing the overhead. ProvIoT’s feder-

ated architecture protects each device’s privacy by only sharing local models’ weights across

the network e.g., system data never leaves the edge device. The local model weights are

aggregated in the cloud using federated learning (McMahan et al., 2017) to create global be-

havioral models, which are shared with the edge devices for on-device detection. As a result,

the edge devices collaboratively train a detection model with experiences from each device

in the federation. Since detection is performed on-device, even if an attacker disconnects a

device from the network, the local detection engine remains functional. This decentralized

approach allows IoT systems to scale their security defenses without overwhelming local

resources, providing reliable protection across a wide array of devices.

In ProvNinja we focus on the challenges posed by adversarial attacks against PIDS,

where sophisticated adversaries manipulate system behaviors to evade detection while achiev-

ing malicious objectives. PIDS are vulnerable to adversarial attacks that combine traditional

2

masquerading techniques with behavioral mimicry, allowing them to evade detection by

making malicious actions appear benign. The adversarial attacks are not only limited to

the feature space (ML model latent representation) but are realizable in the problem space

(e.g., real-world system actions). Such attacks therefore present a significant and meaningful

challenge for securing systems against advanced adversaries.

ProvNinja systematically tests the robustness of PIDSs (e.g., traditional PIDS (Wang

et al., 2020; Han et al., 2021) and GNN-based PIDS) by measuring their robustness against

realistic adversarial examples. This involves identifying conspicuous system events in the

traditional attack chain, replacing them with similar common system events, and then re-

alizing the modified attack in real system executions (Metasploit, 2021; MetasploitVenom,

2021). By exploiting the vulnerabilities of ML models to adversarial manipulation, ProvN-

inja highlights the need for more robust security defenses that can withstand both known

and unknown attack strategies. Evaluations show that current PIDSs struggle against these

evasive tactics, underscoring the importance of robustness in provenance security solutions.

While ML models built on provenance graphs can effectively detect complex attack pat-

terns (adversarial attacks notwithstanding), their opaque nature can make it difficult for

security analysts to understand and trust their decisions. The lack of explainability in these

models, particularly GNNs, limits their adoption in security-critical environments where un-

derstanding the rationale behind a detection is just as important as the detection itself.

Security practitioners require explanations that are not only accurate but also meaningful

in the context of real-world threats.

ProvExplainer tackles this challenge by introducing an explainability framework that

enhances GNN-based security models with security-aware graph-structural features. By us-

ing these features exclusively for interpretation, this approach decouples the decision-making

process from feature engineering. This allows feature development to focus on providing

security-relevant explanations rather than improving detection accuracy. ProvExplainer

3

introduces interpretable surrogate models (i.e., decision trees) that capture discriminative

graph substructures linked to diverse malware behaviors (e.g., drive-by downloads, system

probing, and malware staging) and use these patterns to explain decisions made by the GNN-

based PIDS model. This framework not only improves the interpretability of GNN-based

detectors but also facilitates the integration of domain-specific knowledge into the explana-

tion process, allowing security experts to make informed decisions. Evaluations demonstrate

that ProvExplainer surpasses state-of-the-art (SOTA) explainers in providing security-

aware explanations, making it a critical advancement in the adoption of ML for security.

Provenance-based analysis represents a powerful and flexible approach to securing modern

computing environments, from IoT devices to enterprise networks. While provenance graphs

provide rich and behavioral data for detecting and mitigating advanced attacks, several chal-

lenges must be addressed for widespread adoption: e.g., scalability in constrained environ-

ments, resilience against adversarial manipulation, and the need for explainability. Through

ProvIoT, ProvNinja, and ProvExplainer, we extend the capabilities of provenance-

based security solutions, making them more scalable, robust, and interpretable for real-world

deployment. These advancements lay the groundwork for future research and practical ap-

plications in securing complex and dynamic systems.

1.2 Dissertation Outline

In this section, we will discuss the layout of the remaining chapters and summarize them.

The background to understand this dissertaion is presented in Chapter 2. We give

an overview of the provenance domain, then detail our system provenance data collection

pipeline and data format. This is followed by a discussion of Intrusion Detection System

(IDS) detection explanability and ground-truth verification. Then, we survey PIDS and the

SOTA GNN-based IDS. Finally, we include a discussion of Fileless Malware and Stealthy

APT attacks.

4

Chapter 3, “Privacy Preserving Federated PIDS for IoT Domain – ProvIoT”, presents

the development and evaluation of ProvIoT, a provenance-based security detection system

tailored for IoT environments. This chapter discusses how ProvIoT counters stealthy

attacks using federated learning and on-device detection. It introduces a new design choice

for federated edge-cloud collaborative security learning, which streamlines computationally

expensive graph-based behavioral security within the IoT context. Additionally, we evaluate

the effectiveness and efficiency of ProvIoT using realistic attack cases, including Fileless

malware.

Chapter 4, “Evasive Attack Generation Framework – ProvNinja” presents a systematic

study of adversarial evasion against provenance-based ML security detectors. The chapter

explains how ProvNinja leverages a publicly available surrogate dataset to implement a

data-driven approach that constructs evasive attack vectors while complying with realistic

system constraints. It further evaluates against various PIDSs, using comprehensive datasets

gathered from public and private real-world environments that include both benign and

malicious data.

Chapter 5,“Explaining GNN-based PIDS – ProvExplainer” describes the explanation

framework ProvExplainer, which aims to increase the transparency and verifiability of

PIDSs. This chapter outlines how ProvExplainer examines graph structural features

linked to system actions and security events, aided by security domain knowledge. It also

highlights the development of security-aware features that enable surrogate models to achieve

high agreement with the detection model when detecting APT and Fileless malware. In

our evaluation, we show that integrating ProvExplainer with SOTA GNN explainers

(e.g., GNNExplainer, PGExplainer, and SubgraphX) improve ground-truth explanations.

Finally, Chapter 6 concludes the dissertaion by illustrating these works’ limitations and

presenting some avenues for future research.

5

CHAPTER 2

BACKGROUND

In this section, we provide an overview of the system provenance domain, exploring its down-

stream applications of IDS and GNN-based IDS. We then discuss the role of explainability

in security contexts, highlighting its connection to ground truth verification. Lastly, we of-

fer background on stealthy attack techniques, including Fileless malware and APT attack

campaigns.

2.1 System Provenance Overview

System provenance analysis (Liu, Zhang, Li, Jee, Li, Wu, Rhee, and Mittal, Liu et al.),

originally proposed by King et al. (King and Chen, 2003a) for host-based system monitoring.

System provenance operates through the installation of a data collection agent on each host

to collect syscall level system events. These events are then sent to an in-memory or

external database to build a causality graph by associating data and control dependencies

between processes, files, and network resources. The events that system provenance collects

are as follows: (1) process events, such as process CREATE; (2) file events, including file READ,

WRITE, and EXECUTE; and (3) network events, including socket CREATE, READ, and WRITE.

With the increased deployment of provenance-based security solutions in the last decade

(CrowdStrkie, 2020), the output of system provenance, the provenance graph, forms the

foundation for graph-based learning and detection approaches. In this regard, provenance

graphs best represent the runtime characteristics of system entities and have quickly become

an essential source of input to model a program’s runtime behavior. Along with recent de-

velopments in graph-based learning approaches (Kipf and Welling, 2016; Pan et al., 2019),

research on behavioral modeling and its application for anomaly detection has gained con-

siderable momentum (Hassan et al., 2019; Wang et al., 2020; Rehman et al., 2024; Jia et al.,

2024; Cheng et al., 2024).

6

Table 2.1: Node and egdge types for in-house system provenance with associated attributes.

Types Attributes

Nodes
(resources)

process signature, executable name, pid
file owner (uid, gid), name, inode
socket (IP) dstip, srcip, dstport, srcport, type

Edges
(events)

process → process command args, starttime
process → file read, write, amount
process → IP address send, recv, amount

2.2 System Provenance Data Schema

System provenance analysis (King and Chen, 2003a; Liu, Zhang, Li, Jee, Li, Wu, Rhee,

and Mittal, Liu et al.; Wang et al., 2020; Hassan et al., 2019) leverages data collection

agents on end-hosts to collect interaction events among key system resources: processes,

files, and network sockets. This work relies on in-house data from 21 hosts in a university,

the DARPA Transparent Computing (TC) dataset (DARPA, 2019). Our in-house data

collection accumulates 13 GB to 92 GB daily, tracking around 875 unique programs, 7,025K

processes, 4,824K network connections, and 111,583K file operations.

Our system provenance data schema, detailed in Table 2.1, is similar to DARPA’s

Common Data Model (CDM) (DARPA, 2019) schema, but we omit memory objects, registry

events, and thread distinctions within a process. These choices were made to balance real-

world overhead constraints of load balancing and storage. We also established a malicious

testbed to generate malware execution traces. To ensure the freshness and realism of our

malware samples, we utilize Cyber Threat Intelligence (CTI) feeds (ATT&CK®, 2022b),

the VirusTotal API (VirusTotal, 2021), and penetration testing tactics, techniques, and

procedures (TTPs) (Metasploit, 2021; Strike, 2023).

2.3 System Provenance Graph

System provenance traces information, control, and temporal dependencies of a computer

system (King and Chen, 2003b; Liu, Zhang, Li, Jee, Li, Wu, Rhee, and Mittal, Liu et al.). By

7

examining system-call logs, we can monitor the behavior of all processes on a system, tracking

all READ, WRITE, and EXECUTE operations on files and network sockets. Please note that we

refer sockets to indicate IP-based network connections. We create a provenance graph by

associating the casual dependencies between these system events. Formally, a provenance

graph is a connected set of timestamped edges e = (u, v, r) where u, v ∈ {processes ∪ files ∪

sockets} and u is causally dependent on v (e.g., a file u is written to by a process v), and r

is the relationship between the nodes (e.g., READ and WRITE files, and EXECUTE programs,

SEND to and RECEIVE from sockets).

The provenance graph, annotated with various attributes for nodes (e.g., resources, such

as processes, files, and network sockets) and edges (e.g., system calls over resources), includes

process executable names, IP addresses, access types, and more. These graphs serve as

invaluable forensic analysis tools, helping discover points of entry, tracing lateral movement,

and assessing the scale of damage. However, the fine-grained nature of these graphs leads

to high complexity and heterogeneity, causing their size to grow exponentially over time.

Consequently, researchers actively explore various approaches to reduce both analysis and

storage overheads (Fei et al., 2021; Tang et al., 2018; Xu et al., 2016).

2.4 System Provenance-based Intrusion Detection System (PIDS)

PIDS have focused on stealthy attacks such as APT campaigns to address known limitations

of the traditional security defenses. The signature-based IDS is built on static resources

(e.g., filename, IP, domain names) and their derived artifacts (e.g., hashes) which can triv-

ially be forged by legitimate system operations or advanced attacker techniques (O’Kane

et al., 2011; Song et al., 2007) or Fileless techniques (Song et al., 2019; Barr-Smith et al.,

2021), which have become a de facto attack vector, allowing attackers to impersonate their

identity into the system’s normal behavior.

8

The rule-based IDS (yar, 2020; sno, 2021; sur, 2020) extends signature-based IDS by

encoding behavioral patterns around the highly-sensitive system resources. However, this

is also limited in detecting stealthy attack campaigns that take place over a long duration

involving dependencies over multiple resources. The signature-based IDS relies on static

resources (e.g., filenames, IPs, domain names) and their derived artifacts (e.g., hashes),

which can be easily evaded by advanced attackers who can incorporate benign looking system

operations or stealthy attack techniques (O’Kane et al., 2011; Song et al., 2007, 2019; Barr-

Smith et al., 2021). These methods have become a de facto attack vector, allowing attackers

to blend their identity into the system’s normal behavior.

The rule-based IDS (yar, 2020; sno, 2021; sur, 2020) expand upon the signature-based

IDS by encoding behavioral patterns around highly-sensitive system resources. However,

this approach also has limitations in detecting stealthy attack campaigns that take place

over a long duration. This can also be bypassed by Fileless techniques (Song et al., 2019;

Barr-Smith et al., 2021), which have become a de facto attack vector, allowing attackers to

impersonate their identify into the system’s normal behavior.

For instance, using the Fileless technique, the attacker can access to highly sensitive

resources (e.g., /etc/passwd or /etc/shadow) by impersonating one of many legitimate

programs (e.g., /usr/bin/sshd, /bin/passwd, /bin/ls) 1
Recent advancements in ML re-

search have extended anomaly detection to provenance graphs (Zengy et al., 2022; Rehman

et al., 2024; Cheng et al., 2024), allowing individual processes to be monitored for unusual

behavior at runtime.

Graphs are known for their ability to capture complex relationships between nodes and

edges, which are translated to system resources (e.g., file, process, and sockets) and causal

dependencies among them. Structural relationships captured by system provenance offer

1
From event database history, we found on average 53 and 10 programs which access /etc/passwd

and/etc/shadow respectively over two weeks period.

9

robust features which are hard for an adversary to manipulate. Unlike resource names or

hashes, it would take a larger effort to manipulate a long list of structural dependencies

among system resources while seen benign to anomaly detection models. Therefore, despite

its data collection and modeling costs, the PIDS has become a promising countermeasure

against stealthy attacks and APT campaigns.

Graph-based analysis and its application for anomaly detection are computationally ex-

pensive and require a large amount of training data. Hence, the research community has

introduced several approaches to embed provenance graphs into a vector space to train ML

models (Han et al., 2020; Wang et al., 2020; Hassan et al., 2019; Han et al., 2021). Path-

based models extract graph subcomponents (e.g., causal paths) from the provenance graph

and vectorize them to leverage existing learning approaches (Breunig et al., 2000; Google,

2021b). Although efficient even against large volume of graph inputs, the embedding ap-

proach compromises the detection accuracy by sampling subset of provenance graphs, losing

the context of the entire graph. Recent advancement of framework support and associated

technologies (DGL, 2022), we can leverage Graph-Neural Network (GNN) (Chaudhary et al.,

2019) techniques to digest the entire provenance graph directly.

In this dissertation, ML detectors refer to learning-based security detectors that operate

on system provenance graphs encompassing path-based and graph-based models. The path-

based models first deconstruct the graph into path embeddings and train on them, whereas

Graph-based models work on entire graphs (rather than paths). We specifically discuss (1)

two path-based models — ProvDetector (Wang et al., 2020), which uses Local Outlier Factor

(LOF) on path embeddings to find outliers; and SIGL (Han et al., 2021), which uses an

AutoEncoder (AE) to identify anomalous paths by characterizing the abnormality with the

reconstruction loss of the path embeddings extracted from the AE model, (2) two Graph-

based models — a GAT model named GAT (“Structure-Based Graph Attention Network”)

that uses the full provenance graph without node and edge attributes to distinguish benign

10

and anomalous graphs, relying only on the structure of the graphs; and another similar model

that includes the node and edge attributes along with graph structural features, which we

named as Prov-GAT (“Attribute-Based Graph Attention Network”).

While features and attributes for individual nodes and edges are local and easily manip-

ulated, the structural relationships among them would pose difficulties for the attacker as it

would require a series of complex operations to make graph-level changes and still be seen

as benign by the anomaly detection models. To demonstrate ProvNinja’s generality, our

research implements evasive attacks against all of these provenance-based ML models.

2.5 Graph Neural Network (GNN)-based PIDS

Our research employs an industry-standard GNN framework to model and explain system

provenance graphs, leveraging DGL’s mature development ecosystem (DGL, 2022) for align-

ment with current analytical techniques and streamlined integration into real-world appli-

cations. Despite the security community’s historical preference for custom detectors
2
(Yang

et al., 2023; Zengy et al., 2022; Cheng et al., 2024; Rehman et al., 2024; Goyal et al., 2024) due

to the complexity and heterogeneity of provenance graphs, we chose a general GNN frame-

work for long-term integration benefits and broader impact. Notably, the DGL community

has integrated our heterogeneous GNN enhancement.

2.6 Explainable ML in Security

Explainability of GNNs

Recent research in GNN explainers (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021)

has advanced in identifying key nodes, edges, or subgraphs in GNNs, and are categorized

into white-box and black-box explainers. White-box methods, e.g., GNNExplainer (Ying

2
It has only been recently that GNNs have started gaining attention within the community. Certain

provenance-based ML detectors were even proposed before GNN frameworks became popular.

11

et al., 2019) and PGExplainer (Luo et al., 2020), access GNN internals, including model

weights and gradients. Conversely, black-box methods like SubgraphX (Yuan et al., 2021)

operate on model inputs and outputs, reducing coupling between the explanation framework

and model architecture.

Explainability in Security Context

Due to the importance of explainability in the security domain, several explainers have

been proposed for ML-based security analysis. LEMNA (Guo et al., 2018) focused on clas-

sifying PDF malware and detecting a function’s entry point in binary code using regression

mixture models as a localized surrogate to approximate the classifier’s decision boundary.

Recent works such as CFGExplainer (Herath et al., 2022) and FCGAT (Someya et al.,

2023) use deep surrogate models to explain GNN-based malware detection using control flow

graphs or function call graphs. These methods exclusively work on homogeneous graphs,

thus cannot be directly applied to provenance domain. Jacob et al. (Jacobs et al., 2022)

proposed TRUSTEE, a framework that generates DT-based interpretations for ML mod-

els to detect shortcut learning (e.g., problem underspecification). Their success clarifying

model decisions about network packets inspired us to generalize the approach to the system

provenance domain. The core challenge is that the system provenance domain relies on

highly heterogeneous graph datasets, which are not natively consumed by DTs. By leverag-

ing security-oriented graph structural features and cooperating with general-purpose GNN

explainers, ProvExplainer enables DT-based explanations in the provenance domain.

2.7 Ground-truth Verification in System Provenance

In system provenance, “ground truth” refers to the real-world information against which

the validity of a model’s predictions are checked. In this dissertation, we approximate the

ground truth using documentation created by security vendors, tech reports, and previous

studies. The relevant processes, files, and network sockets mentioned in the documentation

12

are designated as documented entities. We understand that the documentation provided by

the security vendors can have experimental errors, as well as selection and experimental bias.

To mitigate these problems, we aggregated information from multiple security vendors.

We extract documented entities with three methods: (1) referring to pre-existing mal-

ware profile databases that contain information from different security vendors, such as

VirusTotal (VirusTotal, 2021), we obtain activity summaries detailing network communi-

cations, file system actions, and process behaviors; (2) we extract key entities (i.e., process

involved, files created and connections made) from tech reports (dar, 2023a,b) and system

manuals (die.net, 2017); (3) we reviewed dataset documentation to identify the components

of each attack present in the datasets.

Ground truth verification of ML model decisions in security-critical tasks has garnered

significant attention, underscoring the role of explanations in unveiling the truth (Warnecke

et al., 2019, 2020; Ganz et al., 2023). These studies highlight the effectiveness of white-box

techniques in malware detection and vulnerability discovery, with further advancements in

reconstructing ground truth around local explanations (Ganz et al., 2023). (Kosan et al.,

2023) has shown high variance in explanations provided by traditional GNN explainers,

raising reliability and applicability concerns.

2.8 Fileless Malware

Fileless Malware for IoT Devices

In this dissertation, Fileless attack refers to a group of attack techniques with no footprint

in the file system. Alternative terms used in the field include “zero-footprint”, or “living off

the land” (Barr-Smith et al., 2021).

Fileless malware are characterized by the impersonation of trusted off-the-shelf applica-

tions and pre-installed system utilities. Since many of these trusted applications are com-

monly used by users and system administrators, it is harder for defenses to block access to

13

them to prevent such attacks completely. Such impersonation techniques have seen rising

popularity in recent cyberattacks (Li et al., 2021; Barr-Smith et al., 2021). Instead of storing

the malware payload directly onto the disk before executing it, this malware uses the strategy

of “living off the land” by injecting it into benign running processes (e.g., trusted applica-

tions) and avoiding detection by executing only in process memory. During runtime, the mal-

ware may also rename itself to a seemingly benign process name using a prctl(PR SET NAME)

call. These impersonation approaches have diverged and evolved in multiple ways in IoT

systems (Cozzi et al., 2018a; Costin and Zaddach, 2019). Some possible impersonation

approaches are highlighted below.

Process Injection. ptrace() is a system API used to support code injection to another

process for development purposes. However, attackers have abused ptrace() to inject ma-

licious code into the memory of legitimate processes (ATT&CK®, 2021f).

In-memory Execution. The memfd create() system API family creates an anonymous

file in memory-mounted file systems. Using memfd create(), an attacker can directly load

malware from the memory space without writing a payload to the filesystem. This attack

enhances the traditional attack strategy of storing malware in transient storage (e.g., /tmp,

/var/run, /dev/shm). With memfd create(), the malware further reduces its footprint,

preventing users from locating it with standard filesystem access even during runtime. Mul-

tiple loader frameworks (Cybersecurity, 2021) exist that are able to encode regular file-based

malware into different Fileless variants.

Case Study: FritzFrog. In January 2020, a security group discovered and reported

FritzFrog (Harpaz, 2020), a sophisticated peer-to-peer (P2P) malware botnet. FritzFrog

is a crypto mining worm that breaks into and spreads through SSH servers. Written in

Golang to natively target different architectures, FritzFrog uses Fileless techniques to leave

no traces on the filesystems of the infected devices. We specifically consider FritzFrog in the

context of IoT devices.

14

file

socket

process

nginx

(a) Benign nginx

file

socket

process

fritzfrog

(b) Impersonated nginx

Figure 2.1: FritzFrog malware impersonating nginx web-server.

FritzFrog performs file operations in memory to impersonate a regular benign system

process’s identity. After the initial break-in, FritzFrog masquerades as the nginx web server

or the ifconfig process. The infected IoT device connects to a command and control (C&C)

server via encrypted sessions to seemingly benign beacons. Then, the malware infects other

IoT devices to mine cryptocurrencies by exploiting a weakness in SSH services. Figure 2.1

compares the behavior of the original nginx process and that of FritzFrog impersonating

nginx. Although FritzFrog leaves no filesystem footprint, provenance-based intrusion detec-

tion systems can detect and defend against it as the behavior of benign nginx and FritzFrog

are distinct.

FritzFrog is completely proprietary; its P2P implementation and C&C communication

were entirely written from scratch, indicating that the attackers were high-profile security

professionals. We obtained samples of FritzFrog and reversed the malware to trigger its

Fileless behavior. We reproduced the Fileless behavior through network interceptions and

15

Table 2.2: Top 10 impersonation targets for Fileless malware.

Impersonating Programs
Malware
Samples

Percentage of whole

conhost.exe 847 15%
rundll32.exe 821 14%
python.exe 822 13%
svchost.exe 734 12%
explorer.exe 673 11%

reg.exe 537 9%
cscript.exe 442 8%

wmic.exe 439 7%
schtasks.exe 329 6%
nslookup.exe 281 5%

specific command line inputs. In Section 3.5.3, we evaluate ProvIoT’s effectiveness by

comparing the captured behavior of FritzFrog against the model we built using execution

traces of Nginx and ifconfig collected from our benign deployment.

Fileless Malware for Non-IoT Devices

Various tactics, techniques, and procedures (TTPs) are developed and shared to empower

advanced attackers, which have contributed to the recent proliferation of major cybersecurity

incidents. Fileless malware is one of the most noteworthy among these and regarded as a

de facto attack vector for APT campaigns. Because Fileless malware does not write an

executable to the file system, common threat detection schemes that scan the file system

for suspicious artifacts are ineffective, allowing attackers to impersonate or inject behavior

into common system programs. Fileless techniques are widely used in APT campaigns

to hide malicious activities during lateral movement or to reduce the attack footprint of

standalone malware(Song et al., 2019; Forrest, 2017; Kaspersky, 2020). Referring to the

latest research (Barr-Smith et al., 2021), we established a large-scale Fileless malware dataset

(refer to Table 2.2) for our research.

16

2.9 Advanced Persistent Threat (APT) Campaigns

APT campaigns exhibit two main characteristics: (1) a long-lasting nature, particularly dur-

ing the lateral stage, and (2) the use of stealthy attack vectors to minimize the attacker’s

footprint and remain undetected throughout the campaign. While advanced security solu-

tions have focused on tracing these attacks by mitigating system events with high-security

implications, our study concentrates on the robustness of provenance-based ML detectors

against evasion attempts by advanced adversaries. To adequately evaluate the provenance-

based IDS approaches and their robustness, we implemented two realistic APT scenarios —

Enterprise APT and Supply Chain Attack, alongside a large dataset for Fileless malware.

Unlike conventional attack vectors, stealthy attacks are designed to evade security de-

tection systems by hiding malicious activities. Hence, advanced adversaries commonly use

various Tactics Techniques and Procedures (TTPs) to forge static and easy to manipulate

artifacts. They are advanced and skilled enough to craft their attacks to remain undetected

by conventional security systems, which motivated the research community to develop ad-

vanced security solutions. Therefore, provenance-based IDS has become a promising defense

to counter stealthy attacks and APT campaigns. While features and attributes for individual

nodes and edges are local and easily manipulated, the structural relationships among them

would pose difficulties for the attacker as it would require a series of complex operations to

make graph-level changes and still be seen as benign by the anomaly detection models.

Enterprise APT. The phishing email attack as shown in Figure 2.2 can be classified ac-

cording to MITRE ATT&CK framework into five major TTPs: Initial Access (ATT&CK®,

2022a), Establishing a Foothold (ATT&CK®, 2021a), Privilege Escalation (ATT&CK®,

2021b), Deepen Access (ATT&CK®, 2021e), and Exfiltration (ATT&CK®, 2021c). For

our experiment, we were able to conduct the five TTPs using the well-known penetration

testing framework (Metasploit, 2021; MetasploitVenom, 2021). The attack involves an at-

tacker crafting a malicious macro (e.g., malware named java.exe) embedded attachment

17

Figure 2.2: Enterprise APT scenario.

(e.g., Excel document) which is sent to a machine victim through email that is inside an

enterprise environment, as shown in Figure 2.2. The first TTP, Initial Access, is realized

when the victim downloads and opens the email attachment.

The malicious macro starts a new malware process called java.exe which opens an initial

connection with the attacker’s command and control center (C&C) using port 443. The

second TTP, Establishing a Foothold, is realized here. The attacker then performs Privilege

Escalation by exploiting a vulnerability in (notepad.exe) (CVE, 2022). The attacker can

then open a privileged command prompt (e.g., cmd.exe).

Using the privileged command prompt, the attacker scans the network and breaches

the LDAP server using port 445 to steal SQL database credentials. The attacker then runs

specialized software (ATT&CK®, 2021d) to get the password hashes and LSA secrets. The

fourth TTP, Deepen Access, is realized here as the attacker tries to penetrate the enterprise

organization and infect more victims.

Once the SQL server is located, the attacker executes a malicious visual basic script file

using cscript.exe to create another malware instance. This malware process executes SQL

commands in the privileged shell using osql.exe as well as sqlservr.exe and then dumps

out SQL DB data to the target’s machine using stolen credentials. Finally, the attacker

downloads the database dumps generated by the command and removes itself by deleting

any temporary files, processes or executables created, completing the fifth TTP, Exfiltration.

18

Figure 2.3: APT attack on Docker supply chain.

Supply Chain APT. The supply chain attack Figure 2.3 also contains the five TTPs

mentioned in APT scenario one, but in three stages. It starts with the attacker committing a

malicious docker image to a public repository which contains malicious changes to the docker

compose file. The malicious docker image contains custom programs that allow the attacker

to perform arbitrary file interactions after the docker compose file mounts unauthorized

system directories. The exploitable docker image is deployed across the network using the

victim’s internal infrastructure.

When a victim pulls the malicious docker image they unknowingly complete the first

TTP, Initial Access. Then, the victim runs it by giving the docker image privilege permission

(e.g., sudo), completing the second and third TTPs, Establishing a Foothold and Privilege

Escalation. The modified docker compose file first mounts unauthorized directories and

reads the contents of the home directories of the victim as well as any other user on the

compromised machine. The fourth TTP, Deepen Access, is realized here as the attacker is

able to penetrate different user’s directories without their explicit permission or knowledge.

Data is then exfiltrated by utilizing system programs that are popularly used such as curl,

wget, completing the fifth TTP of exfiltration.

19

CHAPTER 3

PRIVACY PRESERVING FEDERATED PIDS FOR IOT – PROVIOT

3.1 Problem Statement

ProvIoT attempts to detect malicious behavior in IoT systems by learning the distribution

of expected benign behaviors and reporting significant deviations from that expectation. We

primarily consider APT scenarios (Mukherjee et al., 2023) and Fileless malware (mirai, 2016;

vpnfilter, 2018; Harpaz, 2020) that impersonates one or more of a set of whitelisted programs

to evade traditional IDS (Han et al., 2021) mechanisms. Similar to previous IoT security

research (Ding, 2017; Cozzi et al., 2018a), ProvIoT aims to protect IoT devices which have

been the primary target for stealthy adversaries (mirai, 2016; vpnfilter, 2018; Harpaz, 2020).

Besides these devices, ProvIoT is also suited for IoT connected to microcontroller (MCU)

based device families that interact with physical mechanisms for control and monitoring

purposes.

3.2 Threat Model

Our threat model assumes that the data collection and summarization pipeline on the IoT

device is trusted i.e., the integrity of the provenance records are guaranteed by existing secure

provenance systems (Wang et al., 2020; Han et al., 2021; Hassan et al., 2019; Mukherjee et al.,

2023). This assumption is consistent with existing provenance research that requires end-host

data collection and reporting (Hassan et al., 2019; Liu, Zhang, Li, Jee, Li, Wu, Rhee, and

Mittal, Liu et al.; Wang et al., 2020). Securing and verifying the trustworthiness of the end-

host data reporting is an important research topic that is orthogonal to our research (Ahmad

et al., 2022). Procedural dataset poisoning is outside the scope of our work. We consider

the use of distributed consensus protocols (Lamport et al., 1982) or attestation approaches

that extend the root of trust with hardware level support (trustzone, 2018).

20

LOCAL BRAIN N

Feature
Vector

Provenance
Paragraph

Doc2Vec

AutoEncoder

Provenance Graph
Generation

Causal Path
Extraction

Local Brain
Training

Federated
Aggregation

Provenance
Graph

Data
Collection

Provenance
Database

IoT CLOUD BRAIN

LOCAL BRAIN 3
LOCAL BRAIN 2

LOCAL BRAIN 1

IoT
IoT

Feature Vector
Inference

Frequency
Database

Figure 3.1: The federated framework of ProvIoT.

Attacks targeting the IoT platform, communication infrastructure (Acar et al., 2020), or

the analysis process running in the cloud are outside the scope of this dissertation. We further

assume that the reporting agents are honest and restrict our target IoT devices to those with

at least 375MB of RAM (Mothukuri et al., 2021; Shahid et al., 2021) to support provenance

summarization. Many modern commodity IoT devices (e.g., smart thermostats (nes, 2015),

smart watches (app, 2015), smart fridges (sam, 2022), smart doorbells (ama, 2020), and

smart home devices (goo, 2017)) are equipped with 512MB or more of RAM.

3.3 ProvIoT Overview

Figure 3.1 presents the architecture of ProvIoT, that is composed of two collaborating

subsystems: Local Brains and a Cloud Brain. Each Local Brain gathers host-level monitoring

data from the IoT device into an in-memory database. It then summarizes the data and

converts it to neural embeddings for ML model training. Data summarization only incurs

10% CPU usage and 65MB of RAM overhead. We can set the relevant local events and

model training to run infrequently during low-load periods. After the local training, the

Local Brain sends the updated neural weights to the Cloud Brain.

The Cloud Brain uses federated averaging (McMahan et al., 2017) to combine the weights

received from the Local Brains into a global model, which is sent back to each Local Brain

for use in detection. The Local Brain can then perform detection directly on the IoT device

using the federated global model. Periodically, the Local Brain will synchronize with the

21

Cloud Brain, pushing up its local weights and fetching the updated global model. The only

communication that the Local Brains have with the Cloud Brain is the communication of

model weights during training. The Local Brains are fully capable of defending the IoT

devices even when disconnected from the network.

To the best of our knowledge, ProvIoT is the first proposed provenance-based secu-

rity detection approach in the context of IoT that counters stealthy attacks using federated

learning and on-device detection. ProvIoT introduces a novel design choice for federated

edge-cloud collaborative security learning by optimizing computationally expensive graph-

based behavioral security mechanisms for IoT environments. We have extensively evaluated

the efficiency and effectiveness of ProvIoT through realistic deployments, including adver-

sarial scenarios carefully crafted with real-world attack cases and Fileless malware samples.

To benefit the community and facilitate future research, we will make our dataset publicly

available
1
and offer data collection support to researchers and practitioners.

3.3.1 Federated Architecture: Local Brain

We deploy a Local Brain to each IoT device to collect host-level monitoring data including

process creations, file operations and network socket interactions. The Local Brain’s training

has the following major steps: (1) data collection, (2) provenance graph generation, (3)

causal path extraction, (4) feature vector inference and (5) model training.

The first step in doing provenance analysis in IoT is data collection 1 , where we collect

system monitoring data and create system event records. Similar to (Wang et al., 2020;

Hassan et al., 2019; Liu, Zhang, Li, Jee, Li, Wu, Rhee, and Mittal, Liu et al.; Han et al.,

2021; Mukherjee et al., 2023), we collect monitoring data for the following types of system

entities: processes, files, and Unix domain sockets. Each entity type is associated with a set

of attributes. For example, the attributes of a process are its creation time, command used

1
https://github.com/syssec-utd/proviot

22

https://github.com/syssec-utd/proviot

to invoke, executable path and other relevant information. We use these entities and the

interactions between them (e.g., creation, reading, writing) to represent the system behaviors

of the IoT device.

The collected data consists of raw syscall sequences which are translated into meaningful

system information (e.g., file descriptors are translated into file paths and PIDs are trans-

lated into process names) and stored in the provenance database. After translation, the

data collection module processes the information into system events, which embodies the

interaction between two system entities. Formally, we define a system event as eR(ns, nd, t)

where ns is the source entity, nd is the destination entity, t is the time when e occurs, and R

is the relationship (e.g., read, write, create). For example, Process A opens (with write

permission) File B at time T is ew(A,B, T).

System events are queried from an in-memory database to generate 2 the provenance

graphs, G(p), for a particular program. The generated provenance graphs are decomposed

into subgraphs (i.e., provenance paths). Formally, we define a causal path λ in a provenance

graph G(p) as an ordered sequence of system events (or edges) {e1, e2, . . . , en} in G(p), where

∀ei, ei+1 ∈ λ, ei.dst == ei+1.src and ei.time < ei+1.time. The time constraint enforces that an

event can only be dependent on events in the past, which prevents infinite loops.

After causal paths are extracted from provenance graphs, the relevant causal paths are

extracted 3 using a frequency database. Relevant causal paths during training are the

common causal paths since we want to train the behavioral model with common provenance

paths, but during anomaly detection relevant causal paths are the rare, since we want to

detect these rare behaviors.

The frequency database stores historical behavior information for a particular program

and is used during the ranking process, including how many times the system has seen a

particular system event in the past. For example, if an entry in the frequency database is

</bin/bash|CREATE|/bin/cat, [1000]>, it means in the past /bin/bash created /bin/cat

23

one thousand times. False positives due to benign program evolution is an important issue

for ML-based detectors. Therefore, ProvIoT updates the frequency database at run-time

using benign behavior to capture the evolution of program behavior.

The relevant causal paths are converted 4 to feature vectors using doc2vec (Le and

Mikolov, 2014). The local model is then trained 5 on the feature vectors, and the model

weights are sent 6 to the Cloud Brain to update the global model and propagate the localized

information to the other connected Local Brain instances. After the Local Brain receives

the aggregated global model weights, it starts the anomaly identification process. The Local

Brain model uses the new model weights to detect anomalous behavior and raises an alert

if any anomalous events are found. The pipeline is visualized in Figure 3.2 and explained in

§3.4.

Since the only connection with the Cloud Brain host is for sending and receiving model

weights, the network overhead is constant and independent of the amount of data processed

on each IoT device. Additionally, since the global models are stored on the device itself, the

Local Brain can still operate even if the network connectivity is lost. This gives ProvIoT

an advantage over other IoT behavioral anomaly detectors(Cosson et al., 2021; Rieger et al.,

2023) as it does not require the transmission of the data to a centralized server for detection

to occur. This also preserves the privacy of the device. We describe the detection models in

more detail in §3.4.

3.3.2 Federated Architecture: Cloud Brain

Since the Cloud Brain resides in the cloud, it has sufficient computing power to aggregate 6

the model updates from multiple Local Brain instances to build the global detection models

and to synchronize the aggregated global weights with the Local Brain instances. This

architecture scales more efficiently than centralized off-device detection schemes because

federated averaging is infrequent and is less intensive than performing anomaly detection

24

Provenance Graph

generation

Path

Extraction

Feature Vector

Inference Detection

benign
benign
benign

anomaly
anomaly

Document

Building

system

process

Figure 3.2: The detection pipeline of the Local Brain.

for an entire fleet of IoT devices, so expanding the fleet does not dramatically increase the

computational requirements of the Cloud Brain.

Federated Aggregation. Device specific anomaly detection models are aggregates them

using the FederatedAveraging algorithm described in (McMahan et al., 2017). Because

each device gathers data only from the information it encounters, the data from a single

device represents a slice of all the potential benign behaviors. The aggregation that takes

place in the Cloud Brain improves the detection accuracy by combining the different pieces

of information from all the connected clients. Using local and global models and sharing

only the model weights solves the problem of maintaining privacy in each device.

3.4 Federated Detection in IoT Domain

A core component of ProvIoT is its ability to perform detection autonomously on the IoT

device without a centralized server. The local detection module raises alerts when suspicious

events occur. While a centralized server is used to keep the detection module up to date,

it is not necessary for detection. The detection pipeline in the Local Brain use the same

data collection and preprocessing steps as the training pipeline, but selects rare paths for

detection instead of common paths for training.

The detection pipeline, shown in Figure 3.2, works in the following manner: first, the

Local Brain will generate provenance graphs for each target program and extract rare causal

paths for consideration. These causal paths are converted into causal sentences (Wang

25

et al., 2020), which are combined to form a causal document. Next, we use an NLP model,

doc2vec (Le and Mikolov, 2014), to embed the causal document as set of k-dimensional

feature vectors. Finally, we use the trained AutoEncoder (Google, 2021b) model to detect

the malicious causal paths as done by recent studies (Han et al., 2021; Mukherjee et al.,

2023). The intuition is that when feature vectors are inferred using the doc2vec model,

benign causal paths will generate feature vectors that would be clustered separately from

anomalous feature vectors.

It is possible that there is no anomaly in a process, but a combination of processes can

lead to the anomaly, even still ProvIoT would be able to identify these anomalies. Since,

during the graph building phase we capture both the forward dependencies (e.g., creating

new interactions with different system artifacts or modifying system artifacts) and backward

dependencies (e.g., capturing the malware payload deployment event that started the attack

as well as different program and data dependency), we obtain a holistic system snapshot.

Because malicious activities contain previously unseen behavior, their corresponding causal

paragraphs will contain rare sentences, which will be inspected during the detection process.

3.4.1 Provenance Graph Building and Subgraph (Path) Selection

For each target program, the Local Brain will generate provenance graphs from system events

gathered in the data collection module. Causal paths are extracted from the provenance

graphs through a series of random walks. We consider the rarest 15 % of the causal paths

using (Hassan et al., 2019); 15 % was empirically determined in our training phase. Following

(Hassan et al., 2019; Wang et al., 2020; Mukherjee et al., 2023), the rarity of a causal path

is calculated using the frequency database introduced in §3.3.1. The regularity of an event

is R(e = (u, v, r)) = ∣Freq(u,v,r)∣
∣Freq(u,∗,r)∣ , and the regularity of a causal path is R(P = (e1, e2, . . . , en)) =

Πe∈PR(e) ⋅ α, where α is a correction factor to prevent the regularity of long paths from

trending towards zero. The rarity of a path is simply the complement of its regularity,

1 −R(P).

26

attackerIPcurlbash

.config

bash kodi

bash kodi

bash kodi

bashbash kodi curl

Example Graph G1 generated for process, P1

Causal Paths extracted from Graph G1

start

start

start

write

write

start

kodi

start

read

write

file

socket

process

attacker

Document

bash start kodi write .config read kodi start xander

bash start kodi write videoIP read kodi

bash start kodi start bash start curl write attaclerIP

Document D1 generated from Graph G1

videoIP

kodi xrender

.config kodi
read

xrender
start

kodi

videoIP

attackerIP

Legend

Figure 3.3: Example causal paths extracted from a provenance graph, G1, generated for
process, P1. Using the extracted causal paths the sentences are formed for a document, D1.

The information embedded in the provenance graph needs to be extracted to be used

as features. One näıve approach may be to use the whole provenance graph for detection.

However, using the entire graph will result in a lot of benign noise (events) being mixed into

the overall data and the overhead needed to digest the entire graph for ML purposes are un-

reasonable in an IoT context. Many stealthy malware writers use this property to attempt to

blend in with the surrounding benign noise in the graph. Thus, we use a frequency database,

as defined in (Hassan et al., 2019) to extract rare causal paths from the whole provenance

graph. An example of causal paths extracted from a provenance graph in Figure 3.3.

For each selected path, ProvIoT removes the host/entity-specific features, such as host

name and identifier, from each node and edge. This process ensures that the extracted

representation is general for the subsequent learning tasks.

27

Document

bash start kodi write .config read kodi start xander

bash start kodi write videoIP read kodi

bash start kodi start bash start curl write attaclerIP

X1,1 X2,1 X3,1 X50,1X49,1

X1,2 X2,2 X3,2 X50,2X49,2

X1,3 X2,3 X3,3 X50,3X49,3

Feature Vector, x [3 x 50]

X'1,1 X'2,1 X'3,1 X'50,1X'49,1

X'1,2 X'2,2 X'3,2 X'50,2X'49,2

X'1,3 X'2,3 X'3,3 X'50,3X'49,3

Reconstructed Feature

Vector, x' [3 x 50]

autoencoder modeldoc2vec model

e1 < t benign

e2 < t benign

e3 > t anomaly

MSE, e

threshold, t

Figure 3.4: Example detection workload for graph G1 in Figure 3.3. After the document
D1 is formed, the causal sentences in the document are converted into feature vectors (fv)
using doc2vec model. Then the fv are fed into the AutoEncoder to get the reconstructed fv.
Sentences are flagged as anomalous if the mean squared error between the original fv and
the reconstructed fv is above a threshold determined during training.

3.4.2 Document-to-Neural Embedding Model

The extracted causal paths need to be vectorized before they can be processed by the local

detection model. As illustrated in Figure 3.3, we first translate the causal paths into causal

sentences, a process detailed in (Wang et al., 2020). These causal sentences collectively form

a document. Following recent methodologies (Wang et al., 2020; Mukherjee et al., 2023),

we employ the doc2vec Natural Language Processing (NLP) model (Le and Mikolov, 2014)

to transform these causal sentences into their corresponding feature vectors, as depicted in

Figure 3.4. Our doc2vec model, trained using data from benign deployments, ensures that

causal sentences common in benign contexts yield neural embeddings that are more similar

to each other compared to embeddings from rare causal sentences.

3.4.3 Federated PIDS: AutoEncoder

In ProvIoT, each Local Brain trains AutoEncoder models on the feature vectors from

3.4.2 and shares the model weights with the Cloud Brain for aggregation using federated

averaging (McMahan et al., 2017). After fetching the global AutoEncoder models from the

Cloud Brain, the Local Brain is ready to independently detect anomalies.

The Cloud Brain is distinct from the central server in the current state-of-the-art (SOTA)

provenance system for IoT (Cosson et al., 2021; Rieger et al., 2023), which collects all the

28

device data over the network and performs anomaly detection serverside. ProvIoT’s on-

device detection approach affords several advantages: (1) sending only the model weights

over the network both reduces network overhead and preserves the privacy of activities on

the IoT device; (2) on-device detection allows the IoT device to remain protected even when

disconnected from the network; and (3) distributing the detection workload to the edge

devices allows ProvIoT to scale horizontally with the size of the IoT device fleet, rather

than requiring a vertically scaling central server.

The Local Brain’s AutoEncoder models follow a typical structure for anomaly detection.

The AutoEncoder has an encoder, which maps the benign feature vectors to a latent space

representation that captures behavioral patterns, and a decoder, which reconstructs the

original input. To detect anomalies, we measure the Mean Squared Error (MSE) of the

reconstructed input and the original input; the input is flagged as anomalous if the MSE

is higher than an experimentally determined threshold, which for our implementation was

the 99th percentile. The intuition behind this detection scheme is that the AutoEncoder

can effectively reconstruct benign samples similar to the ones it was trained on, but should

struggle to reconstruct samples that are substantially different (i.e., anomalies).

3.5 Evaluation

In this section, we evaluate ProvIoT’s efficacy in detecting stealthy attacks in IoT devices.

To this end, we seek answers for the following three research questions (RQs):

RQ1: Detection Accuracy. How effective is ProvIoT at detecting stealthy attacks

(e.g., Fileless IoT malware impersonating trusted system programs) and APT cam-

paigns? (§3.5.3, §3.5.4)

RQ2: Benefit of Federated Architecture. What benefits does the collaborative ar-

chitecture have over a centralized approach? (§3.5.5)

29

Table 3.1: The IoT applications chosen for evaluation as well as their usage examples.

Usages Application Scenario

Voice Assistant google Inquired general knowledge and everyday
household questions to Google Assistant.

Media Center kodi Updated media streams and played media
during different parts of the day.

IP Camera motion Started streaming multiple live camera
streaming server and watched them.

Network Attached Storage samba Performed network storage action such as
list all the files, delete a file, or add a file.

Network Security Monitor zeek Investigated the network traffic coming
from IoT using Zeek.

RQ3: Resource Efficiency. What CPU and memory overhead does ProvIoT incur?

(§3.5.6)

3.5.1 Dataset

In this section, we introduce the provenance datasets that consist of provenance graphs

generated by capturing the benign and malicious IoT system’s behavior.

IoT Workload. The Table 3.1 shows the typical usage for the IoT applications. Typical

usage for media center (e.g., kodi (kodi, 2018)) is to browse different streams to find playable

and downloadable content. kodi was used to download different medias from the wed along

with browsing different steams. A voice assistant such as Google Assistant (Google,

2018) was used for answering common questions such as “what is the weather like?”. An IP

camera (e.g., motion (motion, 2018)) was used to stream our lab setting from our home.

We used a network attached storage (e.g., NAS) to access files from remote locations as well

as to modify the files. Finally, we used a network security monitoring tool (e.g., zeek (zeek,

2021)) to sniff and inspect at the network traffics that was generated in our lab environment.

Dataset Statistics. This section contains the data set details shown in Table 3.2 and

Table 3.3. In Table 3.2 the benign dataset is represented where we experimented with

five commonly used IoT programs (Costin and Zaddach, 2019) and twenty prevalent Linux

30

Table 3.2: Number of vertices and edges used to create a benign profile for IoT applications
and system programs

Avg. # of
causal paths

Avg. # of
total vertices

/ edges

Avg. # of
forward vertices

/ edges

Avg. # of
backward vertices

/ edges

IoT Application

google 571,052.33 159.0 / 314.0 95.67 / 216.0 63.33 / 98.0
kodi 29,946.89 210.33 / 273.78 149.33 / 176.89 61.0 / 96.89
motion 9,113.0 179.0 / 504.0 5.0 / 4.0 174.0 / 500.0
samba 85,347.0 2,537.0 / 2,857.0 76.4 / 120.8 2,460.6 / 736.2
zeek 494,160.0 2,149.5 / 3,724.5 1,032.5 / 1,124.5 1,117.0 / 2,600.0

average 237,923.84 1,046.97 / 1,534.66 271.78 / 328.44 775.19 / 1,206.22

System Program

bash 166,355.43 454.25 / 510.76 10.57 / 9.31 443.68 / 501.45
cat 184,346.43 310.51 / 210.9 9.0 / 6.99 301.51 / 203.91
cp 175,636.86 193.42 / 212.7 179.09 / 184.69 14.33 / 28.01
cron 214,827.71 327.16 / 241.85 10.27 / 9.96 316.89 / 231.89
dash 153,808.57 371.87 / 381.97 211.61 / 206.44 160.26 / 175.53
dbus-daemon 156,713.0 20.16 / 20.04 9.02 / 6.42 11.14 / 13.62
dd 213,601.29 995.5 / 1,003.6 551.68 / 501.81 443.82 / 501.79
firefox 176,843.86 194.22 / 504.56 15.84 / 18.78 178.38 / 485.78
grep 212,413.86 191.51 / 502.32 13.51 / 16.43 178.0 / 485.89
java 169,180.71 133.94 / 222.4 17.44 / 19.63 116.5 / 202.77
ls 179,185.86 213.62 / 356.47 10.25 / 9.3 203.37 / 347.17
nginx 258,367.17 514.27 / 514.13 500.76 / 501.26 13.51 / 12.87
perl 809.0 25.01 / 23.22 11.95 / 12.05 13.06 / 11.17
ps 181,846.43 834.01 / 998.14 369.21 / 501.77 464.8 / 496.37
python 161,755.57 365.71 / 348.31 11.51 / 8.14 354.2 / 340.17
rm 174,590.43 452.89 / 440.38 15.06 / 18.5 437.83 / 421.88
service 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69
sh 208,367.43 445.01 / 851.27 4.16 / 357.78 440.85 / 493.49
smbd 201,559.57 355.37 / 371.15 9.69 / 3.39 345.68 / 367.76
sshd 182,601.57 233.04 / 234.15 9.35 / 6.6 223.69 / 227.55

average 168,652.11 332.49 / 398.48 99.26 / 120.89 233.23 / 277.59

Table 3.3: Number of vertices and edges used to create IoT Malware and APT attack profile

Avg. # of
causal paths

Avg. # of
total vertices

/ edges

Avg. # of
forward vertices

/ edges

Avg. # of
backward vertices

/ edges

IoT Malware

BASHLITE 110.5 21.0 / 21.0 4.0 / 3.0 17.0 / 18.0
FritzFrog 46,253.8 751.0 / 747.4 248.6 / 246.8 502.4 / 500.6
lizkebab 293.2 29.0 / 33.0 6.0 / 4.0 23.0 / 29.0
randomware 250.4 28.0 / 44.0 8.0 / 12.0 20.0 / 32.0

average 11,726.98 207.25 / 211.35 66.65 / 66.45 140.6 / 144.9

APT Kill Chain Scenario

Gain Access (S1) 2,789.6 510.6 / 554.8 495.2 / 537.6 15.4 / 17.2
Establish a

46,763.75 470.25 / 550.12 398.38 / 429.5 71.88 / 120.62
Foothold (S2)
Deepen Access (S3) 1,192.4 171.0 / 202.6 164.0 / 195.0 7.0 / 7.6
Move Laterally (S4) 27,314.33 97.5 / 116.0 70.17 / 84.83 27.33 / 31.17
Look, Learn and

20,521.75 928.12 / 983.5 897.38 / 929.62 30.75 / 53.88
Remain (S5)

average 19,716.37 435.49 / 481.40 405.03 / 435.31 30.47 / 46.09

31

Table 3.4: APT TTPs for cyber-killchain stages

Cyber-killchain Stages Techniques (ATTCK TTP) Scenarios

Gain Access (S1)

Exploitation for Client Execution Attackers modify a benign looking executable,
(T1203) but once the user opens the application it can

be used by the attacker for arbitrary code execution
File and Directory Permissions Attacker modifies objects in the system so that
Modification (T1222) it can be copied by lower privilege users that

the attacker has hijacked

Establish a Foothold (S2)
Data from Local System (T1005) Attacker moves around the file system,

finding files that contain valuable information
Exfiltration Over C2 Channel Attacker downloads valuable files into
(T1041) a local directory

Deepen Access (S3)

Create and Modify system process Attacker creates a system process that can run in the
(T1543) background and do reconnaissance or mine information
Service Stop Attacker stops firewall or external IDS
(T1489) services so that they cannot detect the APT

Move Laterally (S4)
Process injection Attacker injects a vulnerable process such as
(T1055) a trojan into a benign application so that IDS

cannot differentiate

Look, Learn, and Remain (S5)

System Information Discovery Attacker discovers system hardware information so that
(T1082) they can craft better exploits or exploit hardware

vulnerabilities
Network Service Scanning Attackers scan network services to find services they can
(T1046) use as backup or use as a secondary mode of connections
Network Sniffing Attackers sniff the network to find insecure
(T1040) SSL connections or any other connections

to extract valuable information

system programs (Liu, Zhang, Li, Jee, Li, Wu, Rhee, and Mittal, Liu et al.). Table 3.3 shows

the malicious data set which consists of two parts: four IoT malware which impersonated

the twenty Linux system programs and APT kill chain scenarios conducted using the five

IoT programs.

APT Scenarios. Advanced Persistent Threat (APT) scenario was established in our mali-

cious testbed by loading APT kill-chain components using Fileless wrapper (Table 3.4). The

APT attack vectors were coordinated to comprise the end-to-end attack campaign referring

to MITRE ATT&CK framework.

Dataset Components. Our datasets consist of three major components: forward graphs,

backward graphs and causal paths. The forward graphs consist of all the system events

that are caused by the process associated with a Point of Interest (POI) event, e.g., process

creation, file and socket reads/writes. The backward graphs consist of the system events

that created the POI event. We merge the forward and the backward graphs to get a unified

32

graph that captures all the system events associated with the POI event. We then extract

causal paths from this unified graph; the size statistics for the graphs and causal paths are

shown in Table 3.2. To generate a graph dataset for a given program, we use all process

creations for the given program name as POI events to build forward and backward graphs.

Benign Dataset. We consulted our university’s Institutional Review Board (IRB) to de-

velop an ethical experimental protocol for selecting volunteers for benign data collection.

Once the volunteers were chosen, they received information about how their data would be

used and securely stored to ensure confidentiality. The benign data collection took place

over a period of twelve months, from January 2021 to December 2021, and resulted in the

collection of over 30 TB of data. The benign profile for the programs was constructed by

gathering system events from a diverse set of 33 devices, including ARM-based IoT devices

such as Raspberry Pi, Google TPU, and NVIDIA Jetson Nano boards (rpi, 2018; Google,

2021a; NVIDIA, 2022). The device platforms consist of 1 Google TPU, 1 NVIDIA Jetson

Nano, 3 Raspberry Pi 4, 5 Raspberry Pi 3B+, 5 desktops, 5 laptops, and 13 servers. Impor-

tantly, the provenance graphs that capture the behavior of a given system program exhibit

a relative consistency across different IoT devices and platforms.

The IoT devices in our benign testbeds performed various IoT tasks and common sys-

tem operations categorized as IoT Applications and System Programs respectively in Ta-

ble 3.2. Using this system event data, we generated provenance graphs for popular IoT

applications (Bansal et al., 2022) and common system programs (Cozzi et al., 2018a; Costin

and Zaddach, 2019) that are frequently targeted for impersonation. We chose 1000 benign

process instances for each of the 20 programs and 150 instances for each of the 5 IoT ap-

plications to create the benign dataset. The provenance graphs generated from the benign

IoT applications consisted of 237,923.84 causal paths, 1,046.97 vertices, and 1,534.66 edges

(IoT Application in Table 3.2) on average. Similarly, the provenance graph generated from

the Linux system processes had an average of 168,652.11 causal paths, 332.49 vertices, and

33

398.48 edges (System Program in Table 3.2). For readers interested in further details about

the statistics of the benign dataset and how it was generated.

Malicious Dataset. We created two isolated testbeds to run the malicious workloads.

Firstly, we launched publicly known IoT malware using a Fileless wrapper (Cybersecurity,

2021) to impersonate the identities of the popular IoT applications in Table 3.1. Second, we

conducted a typical APT scenario by carefully coordinated the APT attack vector with

the MITRE ATT&CK (ATT&CK®, 2022b) framework to comprise the end-to-end at-

tack (ATT&CK®, 2022b) campaign. We launched a stealthy attack campaign that contains

five kill-chain(Cyb, 2021) stages (Table 3.4) — (S1) gain access by injecting a malicious pay-

load into an active benign process; (S2) establish a foothold by communicating back to a

C&C server over HTTPS (port 443); (S3) deepen access using a privilege escalation ex-

ploit (Metasploit, 2021), (S4) move laterally by scanning the local network for vulnerable

hosts with open ports; and (S5) look, learn, and remain by exfiltrating sensitive user data to

the C&C server. We refer to the Cyber-killchain (Cyb, 2021) framework to include essential

components that comprise the successful multi-stage APT campaign. Each attack stage was

conducted by different attack TTPs using Metasploit (Metasploit, 2021).

motion

file

socket

process

Figure 3.5: Attacker injects and creates Fileless malware as a child process of motion process.
The provenance graph captures the attacker’s behavior which can be used for detection.

We injected each attack TTP into five common IoT applications listed in Table 3.1 using

a Fileless wrapper (Cybersecurity, 2021). Therefore, the IoT application’s behavior captured

34

in the provenance graph would contain additional nodes and edges (i.e., malicious subgraphs)

corresponding to the malicious behavior due to the injected attack TTPs. Because the

malicious payload behaves differently than the benign application behavior, those malicious

subgraphs are likely to contains rare and anomalous paths that will be detected by the Local

Brain. In Figure 3.5, we render the simplified provenance graph where we injected one of

the attack TTPs to motion. It adds a subgraph whose size is proportional to the number of

malicious activities performed.

We performed the program impersonation experiment five times for each of the four

Fileless IoT malware samples, with a total of twenty impersonation targets (Table 3.5),

resulting in a total of 400 experiments. We conducted the APT scenario seven times on each

of the five APT attack stages for five IoT applications (Table 3.4), totaling 175 experiments

to build the APT dataset. Combining all our experiments, we conducted a total of 575

experiments (175 APT + 400 malware) to create the anomalous dataset. The provenance

graphs collected from the malware evaluation have an average of 11,726.98 causal paths,

207.25 vertices, and 211.35 edges. The provenance graphs for the APT Kill chain scenario

have an average of 19,716.37 causal paths, 435.49 vertices, and 481.40 edges.

We obtain (2) FritzFrog samples, a real-world Fileless IoT malware we discussed in Sec-

tion 2.8 to evaluate ProvIoT against their impersonation targets of Nginx server and

ifconfig. The real-world malware experiment using FritzFrog was conducted 10 times

for each impersonation target (e.g., Nginx server and ifconfig program).

3.5.2 Experimental Protocol

To generate the training and validation sets, we extract all the causal paths from the prove-

nance graphs generated during benign deployment, reserving 90% of the data for training and

10% for validation. To generate the test set, we extract the rarest 15% of causal paths from

the malicious testbeds, which simulates a real environment that has been attacked (Hassan

35

et al., 2019; Wang et al., 2020) and includes a mix of benign and anomalous paths. The

Local Brain instances train on the benign training data and propagate their model weights to

the Cloud Brain. The Cloud Brain then performs federated aggregation on those models to

generate a global model, then propagates the global model back to the Local Brain instances.

Each Local Brain tunes its detection threshold using its own validation set. In intrusion de-

tection, we emphasize the importance of unsupervised learning because the defender should

not make strong a priori assumptions about the attacker’s behaviors.

After we generate the provenance graphs for the benign and malicious cases, we extract

all the causal paths for the benign programs and choose only the top 15% of the rarest

paths (empirically determined) for the malicious cases like previous studies (Hassan et al.,

2019; Wang et al., 2020). The extracted paths are then converted into feature vectors and

split into eighty-ten-ten ratios of training, testing, and validation sets. The Local Brain

first trains on the benign feature vectors and sends the local models’ weights to the Cloud

Brain for aggregation. The Cloud Brain updates the global models and propagates the

global models’ weights back for detection. The threshold used for detection is hypertuned

using the benign validation dataset. We believe our unsupervised modeling is a reasonable

design choice for security applications where we cannot make any concrete assumptions on

the attack behaviors, and program behavior can change rapidly.

3.5.3 Fileless Malware Detection

To represent a wide variety of malware, we selected two popular IoT malwares from (Ding

et al., 2020), a natively Fileless IoT malware (Harpaz, 2020), and a typical ransomware

that would target an IoT system. We injected these well-known IoT malwares into trusted

system processes using a Fileless wrapper (Cybersecurity, 2021) to impersonate them. The

detection results, summarized in Table 3.5, demonstrate that ProvIoT achieves high F1

scores for the majority of combinations, ranging from 0.96 to 0.98. This indicates that

36

Table 3.5: ProvIoT is highly effective in distinguishing IoT malware impersonating as
benign system process as evident from high F1 scores. Grey cells contain low F1 score to
indicate indistinguishable malware behavior for system process, discussed in §3.5.3.

Impersonation
target

Malware

BASHLITE FritzFrog ransomware lizkabab

bash 0.98 0.96 0.96 0.98
cat 0.93 0.99 1.00 0.97
cp 0.92 0.97 0.92 0.95
cron 0.97 0.98 0.98 0.97
dash 0.95 0.96 1.00 0.98
dbus-daemon 0.94 0.95 0.92 0.98
dd 0.96 0.97 0.98 0.99
firefox 0.97 0.96 0.99 1.00
grep 0.96 0.97 0.94 0.95
java 0.96 0.96 0.96 0.98
ls 0.99 0.96 0.94 0.98
nginx 0.97 0.98 0.98 0.96
perl 0.96 0.96 0.95 0.97
ps 0.98 0.97 0.95 0.97
python 0.93 0.97 0.93 0.99
rm 0.92 0.96 0.93 0.98
service 0.93 0.95 0.90 0.99
sh 0.96 0.97 0.91 0.98
smbd 0.96 0.96 0.99 0.99
sshd 0.97 0.96 0.97 0.98

Average 0.96 0.97 0.96 0.98

even when IoT malware is Fileless and impersonates benign programs, its behavior remains

distinct from the original system behavior.

However, some (impersonation target, malware) pairs, highlighted in Table 3.5, proved

challenging for ProvIoT to reliably detect: BASHLITE was able to effectively masquerade as

cp and rm because it primarily performs file copy and delete operations on the local device

while preparing to participate in the botnet; ransomware effectively impersonated cp with

large amounts of file copy operations, dbus-daemon with significant inter-process communi-

cation for cryptographic exchanges, service with manipulation of antivirus services, and sh

with command execution.

To evaluate ProvIoT’s detection against FritzFrog, we ran our attack and evaluated

the result, producing both Nginx and ifconfig cases. As shown in Table 3.6, ProvIoT’s

37

Table 3.6: Federated attack scenarios result for FritzFrog attack

Malware Target Precision Recall F1

FritzFrog nginx 0.93 1.00 0.99

ifconfig 0.97 1.00 0.99

Average 0.95 1.00 0.99

go
og

le kod
i

moti
on
sam

ba zee
k

0.6

0.8

1.0
Gain Access

go
og

le kod
i

moti
on
sam

ba zee
k

0.6

0.8

1.0
Establish a Foothold

go
og

le kod
i

moti
on
sam

ba zee
k

0.6

0.8

1.0
Deepen Access

go
og

le kod
i

moti
on
sam

ba zee
k

0.6

0.8

1.0
Move Laterally

go
og

le kod
i

moti
on
sam

ba zee
k

0.6

0.8

1.0
Exfiltrating

Precision Recall F1

Figure 3.6: High detection accuracy of ProvIoT against APT attacks using federated
learning, some rare exceptions which are discussed in §3.5.4.

precision ranges from 0.93 to 0.97, recall is 1, and F1-score is 0.99. This shows ProvIoT is

efficient in detecting real-life Fileless malware.

3.5.4 APT Campaign Detection

The consistently high detection accuracy (Wang et al., 2020; Han et al., 2021) of ProvIoT,

as measured by precision, recall, and F1 score, is showcased in Figure 3.6. Outside some rare

exceptions, which will be discussed in more depth, the precision ranges from 0.93 to 0.99,

the recall ranges from 0.97 to 1, and F1 scores range from 0.95 to 0.99. The results show

that ProvIoT can reliably detect APT attacks while limiting the number of false alarms.

ProvIoT generates more false positives than false negatives, evidenced by its higher

average recall (99%) than average precision (95%). This trend is also seen in other anomaly

detection systems(Wang et al., 2020; Han et al., 2021). The high F1 score shows that

the threshold is chosen in such a way that the actual anomalous behaviors (true positives)

38

are detected rather than reducing FPs. Therefore, ProvIoT does not compromise on its

detection ability to address false positive rates.

False Negative Cases. Even with path-based behavioral modeling, certain attack cases

(e.g., move laterally (S4) attack for google) are hard to detect because the attacker’s be-

havior is extremely similar to the application’s benign behavior. The precision is 0.99 and

the recall is 0.89, which is much lower than the second-lowest recall rate of 0.97. The move

laterally (S4) stage scans for vulnerable ports to exploit, which is behaviorally similar to

google scanning ports for available IP cameras.

False Positive Cases. ProvIoT has delivered steady and robust detection performance

across our various APT workloads (Table 3.1). Against some APT stages, ProvIoT had

a relatively high false positive rate such as Deepen Access (S3) for google has precision of

0.86 and recall of 0.99, Establishing a Foothold (S2) for kodi has precision of 0.90 and recall

of 1, Gain Access (S1) for motion has precision of 0.88 and recall of 1; Move Laterally(S4)

for samba has precision of 0.86 and recall of 0.99 and zeek has precision of 0.86 and recall

of 0.97.

These instances of high false positive rates are due to system interactions with high be-

havioral variance. We investigated these cases and outlined the explanations based on the

ground truth:kodi often reads hidden configuration files, downloads files containing stream-

ing links from the internet and writes them to temporary locations; google creates and

stops many short-lived threads; motion changes directory and file permission configuration

for camera video storage; samba and zeek both scan and listen to different IPs and ports,

which generates noisy provenance graphs (high variance). We see a high rate of false pos-

itives surrounding the creation and modification of temporary files and directories; since

these behaviors are rare and not well-represented in the benign dataset, so they are marked

as anomalous even when the actions are not malicious. The majority of the malicious paths

were marked correctly as anomalous even though the precision score was below 0.90, the

39

recall score was above 0.96. These results show that ProvIoT is very effective in detecting

stealthy malware.

3.5.5 Federated Learning Benefits

Precision Recall
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Centralized vs. Federated

Centralized Federated

0 2 4 6 8 10 12 14 16
Number of Clients

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(b) Federated Community Benefit

Precision

Recall

Figure 3.7: (a) Federated performance is similar to centralized performance on the same
data. (b) Increasing the number of clients increases performance by increasing the amount
of data in the system.

We evaluate ProvIoT’s federated approach against a traditional centralized architec-

ture using kodi as a representative application. Figure 3.7(a) shows that ProvIoT trades

just 1% precision for the scalability, privacy, and reliability benefits of the federated archi-

tecture. The centralized model was trained on the full dataset and achieved 0.97 precision

and 0.99 recall. For ProvIoT, we used the 16 clients from our benign deployment that had

kodi installed for training, then evaluated those models in our malicious testbeds. In this

experiment, ProvIoT achieved 0.96 precision and 0.99 recall, performing almost identically

to the centralized approach.

To demonstrate how ProvIoT is able to overcome the data view limitation of provenance-

based anomaly detection on IoT devices, we visualize the average performance of the Local

Brains as more clients are incorporated into the system in Figure 3.7(b). By adding new Lo-

cal Brains that see different data, the Cloud Brain is able to aggregate the incoming models

40

to export a global model that better understands the full benign distribution. These model

improvements manifest in improved recall and precision as new clients are introduced.

ProvIoT’s federated approach provides critical benefits for IoT in data localization and

privacy. The primary security benefit is localized detection, which reduces network overhead,

allows detection in the absence of a network connection, and distributes the global detection

workload across the federated devices. Further, because we only share model weights, specific

system events are not shared with the network, which preserves the privacy of the data.

3.5.6 ProvIoT Overhead

Figure 3.8: On RaspberryPi 4B, Local Brain’s processing and prediction uses <10% CPU
and 65MB memory. Model training takes about 375MB memory and <10% CPU.

We experimentally demonstrate the overhead imposed by ProvIoT using an event

database containing 7,085 process creation events, 56,587 file interactions, and 3,608 net-

work interactions. This is typical for 24 hours of execution. We experimented using different

ARM IoT devices such as RaspberryPi 4B board (rpi, 2018) with four CPU cores and 8

GB memory for CPU only device; Jetson Nano (NVIDIA, 2022) with four CPU cores, 4

GB memory and NVIDIA gpu; and Google Edge TPU (Google, 2021a) with single core, 512

MB memory, and edge TPU ML accelerator. To train a reliable model for kodi, ProvIoT

41

requires two weeks worth of data, which results in 5.46 GB of data and four weight synchro-

nizations.

To accurately characterize the overhead imposed on the edge IoT devices, we need to

consider two different modes of execution: training and detection. Training occurs infre-

quently (approximately once per week) and requires less than 10% of the CPU processing

power and less than 375MB of memory for less than four minutes as shown in Figure 3.8.

Detection occurs frequently (approximately once per day) and requires less than 10% of the

CPU processing power and less than 65MB of memory for less than two minutes as shown in

Figure 3.8. Even during peak resource utilization i.e., during training, ProvIoT does not

monopolize the IoT resources. Many home IoT devices, such as smart fridges, thermostats,

and doorbells (nes, 2015; app, 2015; sam, 2022; ama, 2020; goo, 2017) contain sufficient

memory to support on-device training. Specifically, training and detection have a common

provenance graph building and path extraction phase, followed by model training phase or a

prediction phase depending on the mode of execution. Even during peak resource utilization

i.e., during training, ProvIoT does not monopolize the IoT resources.

3.6 Related Works

IoT Security. With the growth of IoT, a significant number of vulnerabilities have been

identified in IoT devices (mirai, 2016; vpnfilter, 2018; Sikder et al., 2021), protocols (zig-

beeflaw, 2015), applications, and platforms (Fernandes et al., 2016). In response to IoT

attacks, diverse detection and prevention approaches have been proposed, such as network-

based solutions (Sivaraman et al., 2015), platform-based solutions (Cosson et al., 2021; Sikder

et al., 2017, 2020; Rieger et al., 2023) and application-based solutions (Jia et al., 2017; Wang

et al., 2020). Our work defends against stealthy attacks including Fileless malware and APTs

targeting IoT devices.

42

Cosson et al. (Cosson et al., 2021) and Rieger et al. (Rieger et al., 2023) has proposed a

centralized node-level monitoring system for IoT using network traffic. However, it requires

the local devices to send their local data to a centralized server where the detection occurs.

ProvIoT has a major advantage over (Cosson et al., 2021) because the users’ data does

not leave the local device and detection occurs on the local device without a network con-

nection. (Mothukuri et al., 2021; Shahid et al., 2021; Nguyen et al., 2018) have showed

how to do federated anomaly detection on IoT, but solely focused on network data. While

the network data is important, stealthy attacks can easily circumvent those defenses with

specially crafted network packets. To the best of our knowledge, we are the first to propose a

federated, privacy preserving, collaborative learning framework using host-level provenance

data for IoT. (Mukherjee et al., 2023) found that the adversarial manipulation of provenance

graphs is substantially more challenging than the manipulation of network data. Because

provenance graphs effectively capture the runtime behaviors of processes, blending in with

benign processes requires substantial domain knowledge, technical expertise, and engineering

effort from the attacker.

IoT Defenses. General intrusion detection (Ding et al., 2020; Wang et al., 2020) approaches

have been extensively studied. For example, (Bostani and Sheikhan, 2017) and (Raza

et al., 2013) designed defenses to detect routing attacks. However, their work focuses on the

6LoWPAN protocol. Our work focuses on creating a generalized federated framework for

IoT.

Recently, several anomaly-based solutions have been proposed to detect different IoT

attacks. SDN-based approaches (Ozcelik et al., 2017), signature-based approaches (Kumar

and Lim, 2019) and machine learning based approaches (Meidan et al., 2018; Bahşi et al.,

2018; Nguyen et al., 2018; Nõmm and Bahşi, 2018; Chawathe, 2018) have been proposed to

detect IoT botnet attacks such as Mirai. However, these approaches only focus on analyzing

network traffic, limiting their capability in detecting attacks with minimal network footprints.

43

The most directly related previous work is (Cosson et al., 2021; Rieger et al., 2023), which

forwards telemetry data for the entire IoT fleet to a central server for anomaly detection;

ProvIoT improves upon the privacy and scalability of (Cosson et al., 2021; Rieger et al.,

2023) by enabling on-device detection with federated learning and provenance analysis.

44

CHAPTER 4

EVASIVE ATTACK GENERATION FRAMEWORK – PROVNINJA

4.1 Problem Statement

In this research, we aim to answer the following research question: Can an adversary use

publicly available information and domain knowledge to efficiently evade ML-based detectors?

Leveraging statistical properties of program execution profiles, ProvNinja generates evasive

modifications to attack chains. We implemented this general technique to create attacks

against four popular ML detectors: (1) path-based models — ProvDetector and SIGL ; and

(2) graph-based models –— GAT and Prov-GAT . As mentioned in §2.4, graph-based models

accept entire provenance graphs as input, while path-based models use paths extracted from

the graphs. These evasive attacks seek to evade detection (i.e., produce false negatives) by

mimicking the execution of benign programs. ProvNinja neither poisons nor interferes

with model training and does not intend to generate false alarms.

While we primarily consider the black-box model, referring to the publicly available

datasets to build a reference surrogate model, we also explore various assumptions about

adversarial knowledge. In §4.8, we evaluate white-box and blind attack scenarios as well.

Across four different ML models, we tackle the research challenge in three stages: (1) iden-

tify conspicuous events in the original attack, (2) search for and substitute inconspicuous

replacement events, and (3) realize the evasive attack and launch it against real-world sys-

tems. Our research question suggests an optimization problem: find a function that provides

graph transformations that minimize the anomaly detection probability. The function takes

as input the established model, the desired attack vector, and system event frequency data,

then return a modified attack vector that minimizes the anomaly score of the attack, which

decreases the risk of detection (Pierazzi et al., 2020).

45

4.2 Threat Model

Adversary knowledge. ProvNinja assumes a black-box model in our implementation. To

avoid alerting the victim, the attacker should aim to minimize the number of black-box model

queries required to generate evasive attacks. The model prediction results are only used to

determine when to finish improving the attack. The adversary has access to publicly available

program execution frequency statistics, which we call the surrogate frequency database. We

infer the rarity of events directly from the regularity scores calculated using the surrogate

frequency database (Hassan et al., 2019; Wang et al., 2020) (§4.4). This approach typically

captures a superset of the edges that strongly influence the model’s prediction.

Focusing primarily on the black-box model for the adversary’s knowledge and capabilities,

we recognize its substantial practical value. Many commercially deployed security solutions

deliver pre-trained models to end-user devices. For example, EDR for mobile and desktop

computers deploys security models to end-user devices, leading us to reasonably assume that

determined adversaries would use them as oracles. We also evaluate the blind and white-

box models to provide a complete landscape. For the blind attack model, we eliminate the

adversaries’ ability to query detection models and rely solely on statistical approximation. In

cases of white-box attacks, where the adversary has complete access to the detection model,

including model architecture and parameters, we employ the GNN explainer (Ying et al.,

2019) to expedite the process of identifying conspicuous events.

Adversary capability. Using this knowledge, the attacker is able to evaluate and realize

the feature-level attacks suggested by ProvNinja; while these suggestions are likely to evade

the detection model, the difficulty of actualizing the suggested attacks with concrete system

actions can vary widely (Pierazzi et al., 2020). We assume a highly skilled and motivated

adversary who is capable of devising these stealthy evasive attack vectors.

46

model

Frequency
Database

Feature Space
Evasion

Problem Space
Real isation

Attack GraphGadget Finder

Camouflage
Generator

provenance graph

Rare Event
 Identifier

causal path

conspicuous
events

Frequency
Database

Evasive
Attack

ProvNinja
Framework

Figure 4.1: ProvNinja framework.

4.3 ProvNinja Overview

There exists a rich literature on adversarial attacks against ML models (Carlini, 2019; Pier-

azzi et al., 2020) that affect prediction results with minimal overhead. However, previous

exploration of adversarial attacks that can exploit provenance-based threat detectors (Goyal

et al., 2023) have been hampered by the limited availability of public datasets and the

significant effort required to realize such attacks in the problem space.

The core of the evasion mechanism is outlined in Algorithm 1. Compared to other

modeling approaches, where the problem space is similar to the feature space, provenance

graphs and their feature embeddings are the product of a long series of transformations

and summaries of the original problem space system events. To evade provenance-based

ML detectors, ProvNinja proposes a three-stage approach as shown in Figure 4.1. First,

ProvNinja locates conspicuous edges that can be modified to evade detection. Second,

ProvNinja searches for feature space modifications to generate an evasive attack. Finally,

we realize the feature space attacks in the problem space to launch the attacks against real

systems (Pierazzi et al., 2020).

To the best of our knowledge, ProvNinja is the first to systematically study adversar-

ial evasion of provenance-based ML security detectors using a publicly available surrogate

47

dataset. ProvNinja employs a data-driven approach to construct evasive attack vectors

with minimal human oversight while adhering to realistic system constraints. We thoroughly

evaluate ProvNinja against various ML models using our comprehensive benign and mali-

cious dataset collected from real-world deployments. To benefit the community and facilitate

future research, we will make our dataset publicly available
1
and offer data collection support

to researchers and practitioners.

4.4 Program Profile Generation – Frequency History of Events

By removing timestamps and non-essential attributes from the original provenance dataset,

we generate a lightweight summary of site-specific event frequencies. Following previous

works (Wang et al., 2020; Hassan et al., 2019; Han et al., 2021), this frequency database stores

the number of historical occurrences of single-hop relationships between processes, files, and

network sockets. For instance, [/bin/bash/|CREATE|/bin/cat, 1000] means that /bin/bash

has created a /bin/cat 1000 times in the past. In previous research (Hassan et al., 2019;

Wang et al., 2020), the frequency database is used by the defender to calculate the rarity

(i.e., potential malice) of system events. This approach complements provenance analysis

because each system event is an edge in the provenance graph. One of the most important

applications of the frequency database is to provide a program profile that characterizes the

site-specific runtime behavior. Referring to the frequency database, we can estimate the

typical runtime behavior of a benign instance of a given program. In §4.6.2, we use this

information to mimic benign process behaviors.

These use frequency databases to store historical behavior information regarding pro-

cesses, files, and network connections in a frequency database (Hassan et al., 2019). We

assume that system events that have occurred in the past are likely to be the normal behav-

ior of the system. For example, (src, dst, rel). e.g., , [\bin\bash\CREATE\bin\cat, 1000]

1
https://github.com/syssec-utd/provninja

48

https://github.com/syssec-utd/provninja

means that the process creation path of \bin\bash with \bin\cat has occurred one thou-

sand times in the past. Comparing against such data, the detection system can then calculate

the rarity of a new system event which in turn can indicate potential malice.

We use the frequency database to calculate the regularity scores (Hassan et al., 2019;

Wang et al., 2020; Han et al., 2021) for a system event, e as well as for the entire causal

path λattack = e1, e2, ..., el of length l. RS(e) = Freq(e)
Freqsrc rel(e)

, and RS(Λ) = ∏l

i=0RS(ei) where

Freq(e) is equivalent to how many times the system event e has occurred in the historic

window with all 3-tuples (src, dst, rel) of e being the same and Freqsrc rel(e) is equivalent to

the frequency of system event e where only src and rel from the 3-tuples are the same. If

event e has only occurred rarely in the system, then the value of RS(e) would be close to 0.

A low regularity score for a rare system event erare would propagate a low regularity score

for the causal path λattack which includes the rare event, erare. An attacker can then utilize

this information of how rare the events are in the attack paths to construct a new attack

path λgadget replacing rare system events with common events from the frequency database.

In this way, he desired action of the original attack path is preserved making the attack

feasible in the real world while simultaneously lowering the detectability of the path.

4.5 Identifying Conspicuous (or Rare) Events

We define “conspicuous” events to be the subset of rare events that also contribute heavily

to a given model’s prediction. When conspicuous events are replaced with common events,

the model’s prediction is likely to shift towards benign. Leveraging the surrogate frequency

database, we define the regularity of an event as Re(u, v, r) = ∣Freq(u,v,r)∣
∣Freq(u,∗,r)∣ (Hassan et al., 2019).

That is, the regularity of an event is the proportional representation of that event among

all events with the same source and relation (e.g., of all processes created by outlook.exe,

what proportion of them were excel.exe?). We calculate the regularity score for each event

in the attack path and select the k least regular events for replacement. For instance, in

49

our Enterprise APT scenario, some conspicuous events are (java.exe, notepad.exe, create

process) and (notepad.exe, IP:445, receive from socket).

When trained on just the graph structure, GNN model does not know the node label such

as executable name of the process, file names, or socket addresses. But from the structure,

the process chains in which the first process reads a file and the last process connects to a

socket are distinctive so it has an negative impact on the prediction. Therefore, given this

graph, GNN classifies it as anomalous.

identify among the important edges which is rare. For example, from the enterprise

APT GNNExplainer identified these process chain as USERINIT.EXE → USERINIT.EXE →

EXPLORER.EXE → OUTLOOK.EXE → EXCEL.EXE → JAVA.EXE as important. But, USERINIT.EXE

→ USERINIT.EXE → EXPLORER.EXE → OUTLOOK.EXE events are common and does not need

to be replaced. Also, even if the attacker creates an attack that replaces these edges, the

attack is infeasible since the attacker cannot modify past causal events with respect to the

attacker’s entry point. We want to note that from the explanation, important edges are not

always rare. Therefore, we use the frequency database to find the rare edge, which in this

case is EXCEL.EXE → JAVA.EXE.

The targeted perturbations with the realistic constraints enforced by frequency database

create adversarial example that mislead the GNN into misclassifying the pattern as benign.

We will discuss more in detail of what we mean by perturbations and realistic constrains in

the following sections.

4.6 Feature Space Evasion

When modifying conspicuous events, the goal is to minimize the chances of detection while

achieving the same attack objectives. Algorithm 1 shows the general ProvNinja framework

that is used to find the evasive adversarial examples. We refer to the surrogate frequency

database to find ”gadgets” (further described in §4.6.1) that can replace conspicuous events.

50

Algorithm 1: ProvNinja

Input: Provenance Graph, G = (V,E)
Frequency Database, F
Defense Model, M
Max. Modification Distance, D
Regularity Threshold, T
Event Search Limit, K
Output: Modified Provenance Graph, G

′
, that is classified as benign by M , or ∅ if

no such graph is found
1 if D ≤ 0 then
2 return ∅

3 rare edges =TopRareEdges(E,K)
4 gadgets = ⋃e∈rare edgesFindGadgetChains(e, F, T)
5 foreach g ∈ gadgets do
6 G

′
=ApplyGadget(G, g)

7 if M (G′) == benign then
8 return G

′

9 G
′
=ProvNinja(G′

, F,M,D − 1, T,K)
10 if G

′
≠ ∅ then

11 return G
′

12 return ∅

An effective gadget achieves the same objectives as the original event, but is more common

in benign execution and is therefore less anomalous. The intuition behind gadgets is that

an evasive attack should behave as closely to benign activity as possible while still achieving

the adversary’s objectives. Because path-based ML detectors lose surrounding structural

information, gadgets alone are sufficient for evasive attack generation. Graph-based ML

detectors, however, will easily detect “naked” gadgets, which typically include sequences of

process creations with no intermediate activity. To mimic the structure of benign activity,

we again refer to the surrogate frequency database to estimate the execution profile of a

typical benign instance of each program used in the gadget. By adding interactions that

mimic a benign process, we “camouflage” the gadget, dramatically improving the attack’s

evasion capabilities against graph-based ML detectors.

51

(a) Enterprise APT attack path in-
strumented with gadgets.

(b) Regularity Score calculation for causal paths for
APT attack vs. APT attack with gadgets.

Figure 4.2: Change in regularity score due to gadget usage.

4.6.1 Evasive System Events (or Gadget) Finder

Certain program transitions in an attack chain can be conspicuous (e.g., excel.exe executes

java.exe). Intuitively, we would like to replace this conspicuous action with a more common

one (e.g., excel.exe executes splwow64.exe). If we make this choice näıvely, we may create

additional conspicuous events later in the attack sequence. We must choose a replacement

program that both avoids the conspicuous event and returns naturally to the original attack.

In ProvNinja, such a program is called a ”gadget”. Unfortunately, there is almost never

a single program that cleanly fits into the attack, so we extend the concept by chaining

multiple gadgets together.

4.6.2 Applying Gadget Chains

With the goal of reducing the conspicuousness of our attack, we introduce the concept of a

gadget chain: a sequence of events (g0, . . . , gn) that will replace a conspicuous event ek, such

that ek−1.destination = g0.source and ek.destination = gn.destination, allowing the gadget

to naturally merge into the attack path. An effective gadget chain will improve the regularity

52

of the attack by replacing rare events with more common ones, while still achieving the same

end result.

We recursively search backward from the intended destination to the intended source

to find gadget chains. We only include system events that have greater regularity than

a user-defined threshold T , which is typically either an empirically chosen constant or a

function of the regularity of the original event to be replaced (in our experiments we used

empirically chosen constant T = 0.03 threshold). This formulation parameterizes the runtime

and accuracy trade-off against exploring more gadget options. Notice that it is possible to

fail to find any gadgets if the regularity threshold is too high. Finally, a domain expert

chooses a gadget from the list to replace the conspicuous event in the attack path.

Table 4.1 shows a subset of the different gadget chains that can be used to replace a

malicious event in the establishing a foothold stage in both the Enterprise and Supply-Chain

APT scenarios. Table 4.2 provides an overview of different gadgets that can be utilized

at various stages of enterprise and supply chain APTs. The five stages covered in this

table include Initial Access, Establish a Foothold, Privilege Escalation, Deepen Access, and

Exfiltration. These gadgets include common programs that are frequently used by attackers

to gain access to systems, escalate privileges, and exfiltrate data. By understanding the

types of gadgets used at each stage of an APT, the attacker can better prepare their attacks

and increase their chance of a successful attack. Each stage requires a different set of tools

and techniques, and understanding them can help defenders identify and prevent attacks at

each stage. Furthermore, being able to detect an attack in its early stages can prevent an

attacker from advancing to later stages and minimize the potential damage of an APT.

4.6.3 Camouflaging Gadgets

While the gadget chains improve the regularity of the attack path, any added processes

are “naked” in that they only have events that are directly related to the attack; because

53

Table 4.1: Example gadgets with their normalized regularity score and problem space re-
jection reason. Regularity scores are normalized from 0 to 10, with a high score indicating
higher regularity.

Index Gadgets (Gadget Length)
Regularity

Score
Rejection

Rule

firefox.exe − (Gadgets) → notepad.exe

1 svchost.exe → wininit.exe → winlogon.exe 2.8 Special
Sequence→ userinit.exe → explorer.exe (5)

2 svchost.exe → cmd.exe 8.3 Display
Irregularities→ shellexperiencehost.exe (3)

3 nssm.exe → python.exe → conhost.exe 4.39 Program
Unavailability→ wininit.exe → explorer.exe (5)

4 conhost.exe → werfault.exe → explorer.exe (3) 8.1 Insufficient
Privilege

5 svchost.exe → schtasks.exe → conhost.exe 7.9 Scheduling
Tasks→ explorer.exe (4)

6 svchost.exe → rundll32.exe → winsat.exe 9.1 Writing to
Registries→ explorer.exe (4)

7 tvnserver.exe → mpcmdrun.exe → conhost.exe 3.3 External Network
Connections→ explorer.exe (4)

8 sshd.exe → ssh-shellhost.exe → explorer.exe (3) 7.5 User
Interactions

9 sshd.exe → mpcmdrun.exe → conhost.exe 7.9 Singleton
Programs→ winword.exe → werfault.exe → explorer.exe (6)

10 services.exe → taskhostw.exe → ngentask.exe 4.2 Special
Protocol Support→ ngen.exe → svchost.exe → explorer.exe (6)

11 svchost.exe → werfault.exe → explorer.exe (3) 9.5 -

python3 − (Gadgets) → wget

12 sh → perl → xfce-terminal → bash (4) 3.9 Display
Irregularities

13 sh → bash → cargo → bash (4) 4.4 Program
Unavailability

14 sh → anacron → sh → bash (4) 3.1 Scheduling
Tasks

15 env → docker → bash (3) 6.4 Resource
Intensive Programs

16 sh → nginx → bash (3) 4.3 Configuration
File Dependency

17 sh → start-stop-daemon → sh (3) 3.4 Network
Disruption

18 dash → bash (1) 9.6 -

no intermediate actions are taken before creating the next process, the surrounding graph

structure of a naked gadget is very distinct from that of a corresponding benign instance of

the program. Graph-based provenance analysis models understand the surrounding graph

54

Table 4.2: APT attack stages first showing the original attack and then the attack using
gadget chain along with their regularity score.

Attack Type MITRE ATT&CK TTP Gadgets Reg. Score

Enterprise
APT

Initial Access winlogon.exe → outlook.exe → explorer.exe → excel.exe 1.3
Establish a Foothold excel.exe → java.exe → x.x.x.x:443 0.5
Privilege Escalation excel.exe → java.exe → notepad.exe → x.x.x.x:445 2.5
Deepen Access java.exe → notepad.exe → cmd.exe → cscript.exe 1.1
Exfiltration cscript.exe → cmd.exe → sqlservr.exe → JDQKL.exe → osql.exe 0.1

Initial Access firefox.exe → svchost.exe → sdiagnhost.exe → services.exe
→ explorer.exe → notepad.exe 7.6

Establish a Foothold firefox.exe → svchost.exe → defrag.exe → werfault.exe
→ explorer.exe → notepad.exe → x.x.x.x:443 6.5

Privilege Escalation python.exe → conhost.exe → werfault.exe → explorer.exe
→ cmd.exe → x.x.x.x:445 8.8

Deepen Access cmd.exe → conhost.exe → werfault.exe 6.7
Exfiltration notepad.exe → werfault.exe → explorer.exe → firefox.exe 9.1

Initial Access firefox.exe → werfault.exe → explorer.exe → notepad.exe 9.1
Establish a Foothold cmd.exe → explorer.exe → svchost.exe → srtasks.exe

→ notepad.exe → x.x.x.x:443 9.2
Privilege Escalation python.exe → werfault.exe → winword.exe → firefox.exe

→ explorer.exe → cmd.exe → x.x.x.x:445 8.5
Deepen Access cmd.exe → explorer.exe → firefox.exe → svchost.exe

→ srtasks.exe → werfault.exe 8.9
Exfiltration notepad.exe → werfault.exe → explorer.exe → cmd.exe

→ services.exe → runtimebroker.exe → firefox.exe 7.7

Initial Access firefox.exe → svchost.exe → dstokenclean.exe
→ notepad.exe 6.6

Establish a Foothold cmd.exe → svchost.exe → disksnapshot.exe
→ werfault.exe → explorer.exe → notepad.exe → x.x.x.x:443 7.3

Privilege Escalation notepad.exe → firefox.exe → svchost.exe
→ python.exe → x.x.x.x:445 9.2

Deepen Access python.exe → conhost.exe → wininit.exe
→ werfault.exe 6.0

Exfiltration notepad.exe → explorer.exe → schtasks.exe → services.exe
→ dllhost.exe → runtimebroker.exe → firefox.exe 7.8

Supply
Chain APT

Initial Access bash → git → bash → docker 6.5
Establish a Foothold bash → sudo → docker → mount 7.3
Privilege Escalation bash → sudo → docker 3.5
Deepen Access docker → bash → python → bash → nmap 2.1
Exfiltration docker → bash → python → wget 2.8

Initial Access python → sh → start-stop-daemon 9.8
Establish a Foothold start-stop-daemon → bash 7.4
Privilege Escalation bash → dhclient3 8.5
Deepen Access dhclient3 → bash → rsync 5.8
Exfiltration bash → curl 7.5

Initial Access python → sh → thunderbird 6.2
Establish a Foothold thunderbird → bash 4.6
Privilege Escalation bash → dbus-daemon 9.8
Deepen Access dbus-daemon → bash → firefox 7.3
Exfiltration bash → curl 7.5

Initial Access python → sh → bash → logrotate 6.1
Establish a Foothold logrotate → bash 6.5
Privilege Escalation bash → ntpd 9.6
Deepen Access ntpd → bash → scp 8.9
Exfiltration bash → curl 7.5

55

structure, so they are easily able to detect the structural anomalies introduced by naked

gadgets.

To mimic the graph structure of a benign program instance, we add events to the

gadget based on the surrogate frequency database in our threat model. For each pro-

gram pg in the gadget, we divide the total number of each kind of resource interaction

(e.g., (pg,∗, write), (pg,∗, read)) by the total number of instances of pg to estimate the typical

distribution of entity interactions for a benign execution. We then add edges to the adver-

sarial graph by sampling interaction targets for pg from the surrogate frequency database.

By keeping the distribution of events in our malicious instance similar to the distribution

of events of the benign instances, our GNN-oriented ProvNinja implementation makes it

difficult for GNNs to detect the use of gadget chains.

4.7 Problem Space Evasion

In this section, we discuss the challenges of implementing evasive attacks in the problem

space. When considering a list of candidate attacks from the feature space, realizing them

in the problem space becomes difficult due to complex system activity dynamics and envi-

ronmental dependencies. Unlike in other ML domains, such as image processing, where the

problem space closely resembles the feature space, system actions experience multiple trans-

formations between data collection and feature embedding. Moreover, the problem space

realization can be affected by the system environment as programs interact with other sys-

tem components. The same system action executed on different systems, or even the same

system at different points in time, may generate different provenance graphs.

After overviewing the principles suggested by Pierazzi et al.(Pierazzi et al., 2020), we

present a set of filter rules that we specifically developed for realizing evasive attacks in

56

the context of system provenance research. Although our current collection of rules is com-

prehensive, our system’s design allows for the integration of further heuristics to minimize

manual efforts and increase evasiveness.

4.7.1 Problem Space Constraints

Pierazzi et al.(Pierazzi et al., 2020) have extensively studied practical challenges related to

problem space realization across various domains. We apply their systematic framework,

which consists of four constraints, to analyze the problem space realization of ProvNinja

in evading provenance-based ML detectors.

1. Available transformations. We use the event history in the frequency database to

generate feature space attacks, as it indicates their previous occurrences and availability.

However, when using public datasets as surrogate references for black-box attacks, discrep-

ancies in available gadgets may occur. To address this, we actively prefer system programs

§4.7.2, as they have a higher likelihood of availability.

2. Preserving attack semantics. Given a list of candidate system actions, expert knowl-

edge and advanced skills are necessary to determine which ones preserve the semantics of

the original attack. Although we can suggest a principled approach to (semi-) automate the

process, the approach would involve numerous domain-specific considerations. In this work,

we manually choose candidate system actions and verify their attack semantics equivalency,

leaving the task of automated verification for future work.

3. Robustness to pre-processing. Unlike domains such as image or audio processing

research with numerous transformative filters, system provenance datasets do not have a

specific pre-processing stage influencing prediction results. However, we can still explore a

line of data reduction research that proposes forensic-aware, lossy graph compression ap-

proaches to address storage and data processing pressures (Fei et al., 2021; Xu et al., 2016;

57

Tang et al., 2018). Assessing the impact of these data reduction schemes on the effectiveness

of evasive attacks renders a promising research direction for future work (Inam et al., 2023).

4. Plausibility to users and security analysts. The newly constructed attack chain

in the feature space should be plausible to regular users or security analysts. Furthermore,

the attack must be unintrusive from user operations or system resource usage standpoints.

Although manual investigations are still required, we preliminarily measure the number of

nodes and edges added by ProvNinja’s evasive actions in Figure 4.3. Limiting the event

footprint induced by the attack reduces the chance that a user will notice the additional uti-

lization of their system. We then filter out potentially intrusive actions using the automated

rule set, as shown in §4.7.2.

4.7.2 System Provenance Filter Rules

To address the practical challenges of implementing problem space attacks, we developed

gadget filters (e.g., rejection rules) to minimize manual effort based on the following prin-

ciples: (1) avoiding programs with large footprints and disruptions to users, (2) enforcing

invariant rules associated with program execution sequences and permission levels, (3) the

problem space should not make unnecessary modifications to the target host that would

result in long-term or short-term side effects, and (4) prohibiting the use of black-listed

programs (e.g., notepad.exe) or suspicious behaviors (e.g., registry updates to schedule

background tasks or inject libraries).

While we suggest a comprehensive set of filter rules, our system design remains open to

accommodating additional heuristics for automating the evasive attack generation process

and enhancing their stealthiness. In §4.8.7, we evaluate their effectiveness in reducing the

required manual effort.

58

Disturbances to End User and System Monitors

GUI interruptions. Some programs can be visually intrusive to be highly suspicious

to users, such as a command prompt flashing on the screen or the file explorer opening.

Therefore, gadget chains that include cmd.exe are rejected because a command prompt

flashing on the screen will alert the user (e.g., gadget path 2,12 in Table 4.1). Gadget paths

including explorer.exe are not automatically excluded because it can be launched in the

background with certain arguments.

Resource intensive programs. When a resource-intensive program (e.g., docker) is run,

it tends to draw more attention from the user and/or alert system monitors thus considered

to be undesirable as shown as gadget chain 15 in Table 4.1.

External network connections and disruption. Programs that impersonate external

socket connections can trigger network alerts and add overhead for attackers needing to set

up receiving servers for camouflaging network reads. Gadget chain 7, 15 in Table 4.1 is

rejected since tvnserver.exe connects externally to manage GPS data. Restarting net-

working processes, as in gadget chain 17 in Table 4.1, can indicate APT attacks, trigger

security alerts, and lead to system instability or data loss.

Program-Specific Considerations

Configuration and operational dependencies. Programs that requires specific config-

uration or dependencies to other programs (e.g., Web servers, ngnix that requires database

access) would impose practical challenges as modifications to configuration files might re-

quire noticeable amount of modifications to the configuration that would result in abnormal

system behavior. Standalone programs with less dependencies other applications and simple

configuration are easier to control the program’s runtime behavior.

Insufficient privilege. Certain gadgets require elevated privileges (e.g., NT SYSTEM SYSTEM)

to function. We analyze permission level consistency throughout the attack chain during the

59

problem space realization, excluding gadgets that requires privilege escalation. For instance,

the attack construction process rejects gadget path 4 in Table 4.1 as it mandates admin

permissions to camouflage conhost.exe.

Special program sequences. Certain gadgets necessitate a specific position in the attack

chain. For instance, wininit.exe is the first user program that initializes the userland ap-

plications followed by winlogon.exe and userinit.exe subsequently executes system pro-

grams such as svchost.exe, conhost.exe, and nssm.exe. While these special sequences

are well-represented in the benign execution profiles of these system programs, they would

appear highly suspicious during normal execution outside of the system bootstrap. Gadget

path 1 in Table 4.1, for example, is automatically rejected because it contains a special

sequence.

Blacklisted Programs and Suspicious Behaviors

Blacklisted programs. Certain programs are under high scrutiny based on the fact that

those programs have been historically hijacked or impersonated by malware. We can sub-

scribe to Cyber Threat Intelligence (CTI) feeds for the up-to-date blacklist to reject suspi-

cious gadgets.

Modification to system resources. Efforts should be made to actively reject gadgets that

modify sensitive system resources such as libraries for payload objectives, as adding camou-

flage may inadvertently link distinct system programs’ provenance graphs together due to

information flow. For example, gadget chain 6, 15 in Table 4.1 is excluded because camouflag-

ing services.exe involves writing to system libraries (KernelBase.dll.mui, ntdll.dll)

which are also read by nssm.exe, connecting the two graphs.

Modification to system configuration. Attackers often modify system configurations

(e.g., Windows registry, Linux crontab, and RC files) to plant malicious activities such as

scheduling malware execution or interposing library loading. Since the security community

60

is well-aware of these practices, we prevent such sensitive operations from being included in

the attack chain. Gadget chain 6 in Table 4.1 is rejected because rundll32.exe writes to

registries. Recent studies on Fileless malware reveal a preference for system programs, as

they typically consume substantial resources in daily usage. Gadget chain 5, 14 in Table 4.1,

which is also rejected, displays a process attempting to schedule a task, as it requires calling

schtasks.exe.

Surrogate Model Discrepancies

The limitations of publicly available datasets used for building surrogate models can result in

an inadequate representation of victim networks. Such datasets may feature programs and

operational behaviors specific to their data collection. For example, the reference dataset in

our study contains obsolete programs like nssm.exe, discontinued after 2016 (nss, 2021), and

proprietary programs like cargo, Rust’s package manager. Using these programs to create

gadget chains, such as 3, 13 in Table 4.1, leads to unrealizable outcomes in the defender’s

system due to their unavailability.

4.8 Evaluation

In this section, we extensively evaluate the effectiveness of ProvNinja at evading provenance-

based IDS. Our evaluation aims to answer the following research questions:

• RQ1: Feature Space Evasion. Do ProvNinja’s evasive attacks effectively evade

ML-based detectors (§4.8.5) under different threat models (§4.8.6)?

• RQ2: Problem Space Attack Realization. Can ProvNinja’s evasive attacks be

realized in the problem space (§4.8.7)?

• RQ3: Surrogate Data Effectiveness. How effective is surrogate data in generating

evasive attacks? (§4.8.8)

61

• RQ4: Attack Transferability. How well do ProvNinja’s evasive attacks transfer

between defense model architectures? (§4.8.9)

4.8.1 Evaluation Methodology

We evaluate ProvNinja’s ability to generate evasive attack sequences against provenance-

based IDS using our enterprise and supply chain APTs §2.9, and Fileless malware Table 2.8

attack scenarios. In our evaluation, the defense models are trained on our large benign

dataset that includes 13 months of organic user activity. The attacker uses the publicly

available DARPA Transparent Computing dataset (DARPA, 2019) as a surrogate dataset

following the blackbox threat model (§4.2). To comprehensively explore ProvNinja’s effec-

tiveness on Fileless malware, we refer to existing work (Barr-Smith et al., 2021) and collect

samples from a popular malware repository (VirusTotal, 2021). We ran 5,925 Fileless mal-

ware samples, categorized them by the system programs they impersonated, and used the

10 largest categories in our evaluation (refer to Table 2.2).

We first evaluate the evasiveness of ProvNinja in the feature space, then we show

that these attack chains are realizable in the problem space. We specifically measure the

effectiveness of ProvNinja in evading four prominent ML detectors from the literature,

which employ two distinct embedding approaches: (1) ProvNinja-PATH targeting path-

embedding detectors, such as ProvDetector and SIGL , and (2) ProvNinja-GRAPH fo-

cusing on graph-embedding detectors, like GAT and Prov-GAT . Additionally, we evaluate

ShadeWatcher (Zengy et al., 2022), the SOTA GNN-based anomaly detector for system

provenance for the general applicability of ProvNinja approach.We select evasive attack

options that are within our capability to implement, then leverage industry-grade pen-testing

tools (Metasploit, 2021; MetasploitVenom, 2021) to create an evasive attack which can be

launched against real systems.

62

Table 4.3: presents the detection results for the baseline, randomly perturbed, and Ninja
attacks, with a lower F-1 score indicating better evasion. We replace rare edges with a
random sequence of programs in random perturbations and with evasive gadgets in Ninja
attacks. We display differences from the baseline values inside parentheses.

Attack Type
GNN-Based
Detectors

Baseline
Random

perturbation
ProvNinja-GRAPH

Precision Recall F1 Recall F1 Recall F1

Enterprise APT
GAT

0.94 0.74 0.83 0.69 (-.05) 0.78 (-.05) 0.37 (-.37) 0.54 (-.29)
Supply Chain APT 0.93 0.78 0.85 0.96 (+.18) 0.91 (+.06) 0.44 (-.34) 0.53 (-.32)
Fileless Malware 0.95 0.94 0.95 0.92 (-.02) 0.94 (-.01) 0.71 (-.23) 0.77 (-.18)

Enterprise APT
Prov-GAT

0.95 0.95 0.95 0.71 (-.24) 0.68 (-.27) 0.25 (-.70) 0.37 (-.58)
Supply Chain APT 0.94 0.96 0.95 0.85 (-.11) 0.90 (-.05) 0.28 (-.68) 0.56 (-.39)
Fileless Malware 0.96 0.98 0.97 0.96 (-.02) 0.96 (-.01) 0.58 (-.40) 0.67 (-.30)

Average 0.95 0.90 0.92 0.85 (-.05) 0.86 (-.06) 0.44 (-.46) 0.57 (-.35)

Attack Type
Path-based
Detectors

Baseline
Random

perturbation
ProvNinja-PATH

Precision Recall F1 Recall F1 Recall F1

Enterprise APT
ProvDetector

0.98 0.78 0.87 0.88 (+.10) 0.92 (+.05) 0.23 (-.55) 0.31 (-.56)
Supply Chain APT 0.99 0.92 0.90 0.95 (+.03) 0.95 (+.05) 0.35 (-.57) 0.30 (-.60)
Fileless Malware 0.91 0.91 0.91 0.94 (+.03) 0.93 (+.02) 0.33 (-.58) 0.43 (-.48)

Enterprise APT
SIGL

0.97 0.99 0.98 0.99 (+.00) 0.99 (+.01) 0.30 (-.69) 0.41 (-.57)
Supply Chain APT 0.90 0.90 0.90 0.96 (+.06) 0.95 (+.05) 0.38 (-.52) 0.43 (-.47)
Fileless Malware 0.91 0.95 0.93 0.98 (+.03) 0.99 (+.06) 0.47 (-.48) 0.57 (-.36)

Average 0.94 0.91 0.92 0.95 (+.04) 0.96 (+.04) 0.34 (-.57) 0.41 (-.51)

4.8.2 Evaluation Datasets

Benign dataset. With the approval and oversight of our university’s Institutional Review

Board (IRB), we solicited written informed consent from volunteers to participate in a long-

running provenance data collection project. Using Linux kernel audits and Windows ETW

event tracing, we collected provenance data involving file, process, and network events.

Our volunteers performed a variety of workloads as students, researchers, developers, and

administrators. In aggregate, our volunteers have helped us collect system event data from

54 Windows hosts and 32 Linux hosts over 13 months, yielding 17TB of system event data

for our benign dataset.

63

DARPA transparent computing (TC) dataset. The DARPA Transparent Comput-

ing Engagement 3 and 5 Data Releases (DARPA, 2019) include extensive system logs of

both benign and malicious activities, which can be used to generate a surrogate frequency

database. However, this dataset is notably limited due to the short duration of the engage-

ments and the scripted nature of the captured activities. The primary challenge for its use

in ProvNinja lies in the limited selection of user/internet-facing applications that execute

system programs, which restricts ProvNinja’s flexibility near the point of entry. We uti-

lized E3/5 Theia and Trace, E3/5 FiveDirections, and E5 Marple for Linux and Windows

gadget mining.

Enterprise APT. We ran the enterprise APT attack campaign (§2.9) on a local testbed

environment which consisted of four windows and three Linux hosts. The recorded sys-

tem event logs constitute our Enterprise APT dataset. We then generated provenance

graphs for the programs used in key stages of the enterprise APT scenario: excel.exe,

java.exe, notepad.exe, osql.exe, explorer.exe, and outlook.exe. This collection pro-

cedure yielded 1,779 provenance graphs with an average of ∼176 causal paths for each graph.

Because provenance graphs include unpredictable background system interactions that

can affect the performance of the models, we ran the scenario multiple times to sample the

distribution of noise in the system and show that ProvNinja’s evasive attacks are effective

in real-world conditions.

Supply Chain APT. We ran the Supply-Chain APT campaign on a local Linux test bed

which is consisted of five Linux hosts. We generated provenance graphs for python, curl,

docker, git, thunderbird, and firefox and the recorded system event logs constitute our

Supply-Chain APT dataset. This collection procedure yielded 1,091 provenance graphs with

an average of ∼494 causal paths each.

Fileless malware. Leveraging a public dataset of Fileless malware (Barr-Smith et al., 2021),

we collected and ran 5,925 malware samples on our distributed Cuckoo (cuc, 2019) sandbox

64

environment. We collected provenance graphs from each sample to capture all the triggered

malicious behaviors. Then, we select the top 10 most well represented impersonation targets

(summarized in Table 2.2) and their graphs to include in our Fileless malware dataset. In

total, our Fileless Malware dataset consists of 1,206 high-quality provenance graphs. This

dataset characterizes the runtime behavior of Fileless malware, opening these sophisticated

techniques for further analysis.

Experimental bias in malware analysis. Kuchler et al.(Küchler et al., 2021) and Avl-

lazagaj et al.(Avllazagaj et al., 2021) have emphasized the importance of considering exper-

imental bias in malware analysis. The use of virtual environments like the Cuckoo sandbox

(cuc, 2019) can introduce biases due to differences in trigger conditions and freshness, which

can significantly affect malware behavior compared to the behavior of malware in the wild.

One of the main challenges associated with experimental bias is the potential for certain

types of malware to be selectively chosen for analysis. For example, if samples are selected

based on activity or freshness, there may be a bias towards highly active or prevalent malware,

while less prevalent or subtle types of malware may be overlooked. To mitigate this issue,

we manually verified malicious behavior in 1206 of our 5925 samples, prioritizing system

programs less affected by custom configurations and user interactions, such as rundll32.exe.

Furthermore, downloading malware samples from sites such as VirusTotal (VirusTotal,

2021) can also introduce bias into the dataset. For example, antivirus programs may have

already classified the samples, potentially skewing the results of any subsequent analysis.

Additionally, the samples themselves may not be representative of the overall population

of malware, as they may be biased towards the types of malware more commonly detected

by antivirus programs. To minimize potential bias, we carefully selected our dataset by

meticulously reviewing threat reports generated by (VirusTotal, 2021) to better understand

the malware’s behavior.

65

Overall, the realism of the malware experiments is constrained by: (1) the sandbox exe-

cution environment, which will not capture the behavior of malware equipped with sophis-

ticated sandbox detection mechanisms, a concern highlighted by (Küchler et al., 2021); (2)

the prioritization of system programs that are not sensitive to user activity or configuration

changes, which reduces the variance in the captured behaviors at the cost of underrepre-

senting user-facing programs, as noted by (Avllazagaj et al., 2021); (3) the use of online

malware repositories, which overrepresents detectable malware instances. The challenge of

accurately representing and profiling the full malware landscape remains an open and or-

thogonal problem.

4.8.3 Dataset Statistics

Benign Program Profiles. In this section, we provide detailed statistics on the system

provenance graphs used throughout this dissertation to evaluate ProvNinja. We selected 52

system programs from our event database that are commonly used in APT campaigns from

previous studies (Wang et al., 2020; Liu, Zhang, Li, Jee, Li, Wu, Rhee, and Mittal, Liu et al.;

Han et al., 2021; Cozzi et al., 2018b). The list can be found in Table 5.4. The program list

consists of two kinds of programs: system programs used by the OS for system functionalities

and user programs that are used in everyday general workloads. On average, the provenance

graphs generated from the benign system programs contained 4,735.30 causal paths, 37.51

vertices and 45.78 edges on average (Table 5.4). The provenance graph generated from the

benign user application consisted of 11,779.36 causal paths, 90.36 vertices, and 112.38 edges

on average (Table 5.4).

Malicious Dataset. There are three anomalous datasets: Enterprise APT, Supply-Chain

APT, and Fileless Malware. We conducted our experiment for each of the APT attack

stages (e.g., Initial Access, Establish a Foothold, Privilege Escalation, Deepen Access and

Exfiltration). The provenance graphs for Enterprise APT contain an average of 493.92

66

Table 4.4: Benign graph size for system programs.

Applications
Avg # of

causal paths

Avg # of
total vertices
and edges

Avg # of
forward vertices

and edges

Avg # of
backward vertices

and edges

System Programs

Windows

acrord32.exe 1957.08 39.58 / 46.51 6.28 / 5.28 33.3 / 41.23
certutil.exe 28162.32 35.09 / 74.54 3.37 / 2.37 31.72 / 72.17

cmd.exe 2462.71 21.99 / 26.71 5.57 / 4.57 16.42 / 22.14
code.exe 10579.16 67.06 / 92.53 16.53 / 15.53 50.53 / 77.0

conhost.exe 4418.39 33.92 / 35.51 2.01 / 1.01 31.91 / 34.5
cscript.exe 6949.2 52.8 / 65.2 2.0 / 1.0 50.8 / 64.2
cvtres.exe 24.5 11.5 / 10.0 2.0 / 1.0 9.5 / 9.0
msiexec.exe 11473.0 74.0 / 96.0 2.0 / 1.0 72.0 / 95.0
netsh.exe 4181.39 34.18 / 44.14 2.31 / 1.31 31.87 / 42.83

powershell.exe 1429.78 33.28 / 38.69 5.06 / 4.06 28.22 / 34.63
sc.exe 270.05 10.06 / 9.31 2.89 / 1.89 7.17 / 7.42

svchost.exe 4.54 5.62 / 3.62 3.31 / 2.31 2.31 / 1.31
tasklist.exe 123.0 14.33 / 19.67 2.0 / 1.0 12.33 / 18.67
taskmgr.exe 3621.88 42.83 / 50.33 2.0 / 1.0 40.83 / 49.33
userinit.exe 77.0 89.34 / 87.34 86.67 / 85.67 2.67 / 1.67
winlogon.exe 30.75 34.5 / 32.5 31.0 / 30.0 3.5 / 2.5

Linux

dash 153808.57 371.87 / 381.97 211.61 / 206.44 160.26 / 175.53
dd 213601.29 995.5 / 1003.6 551.68 / 501.81 443.82 / 501.79
ps 181846.43 834.01 / 998.14 369.21 / 501.77 464.8 / 496.37
sh 208367.43 445.01 / 851.27 4.16 / 357.78 440.85 / 493.49

smbd 201559.57 355.37 / 371.15 9.69 / 3.39 345.68 / 367.76
sshd 182601.57 233.04 / 234.15 9.35 / 6.6 223.69 / 227.55
bash 166355.43 454.25 / 510.76 10.57 / 9.31 443.68 / 501.45
cron 214827.71 327.16 / 241.85 10.27 / 9.96 316.89 / 231.89
cat 184346.43 310.51 / 210.9 9.0 / 6.99 301.51 / 203.91

dbus-daemon 156713.0 20.16 / 20.04 9.02 / 6.42 11.14 / 13.62
ls 179185.86 213.62 / 356.47 10.25 / 9.3 203.37 / 347.17

perl 809.0 25.01 / 23.22 11.95 / 12.05 13.06 / 11.17
rm 174590.43 452.89 / 440.38 15.06 / 18.5 437.83 / 421.88
cp 175636.86 193.42 / 212.7 179.09 / 184.69 14.33 / 28.01

grep 212413.86 191.51 / 502.32 13.51 / 16.43 178.0 / 485.89
service 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69

Average 4735.30 37.51 / 45.78 10.94 / 9.93 26.57 / 35.85

User Programs

Windows

acrobat.exe 92.08 11.35 / 14.32 2.46 / 1.46 8.89 / 12.86
chrome.exe 3028.15 50.17 / 58.69 2.01 / 1.01 48.16 / 57.68
discord.exe 2228.39 61.42 / 76.29 26.03 / 25.03 35.39 / 51.26
excel.exe 33113.53 131.54 / 158.53 35.67 / 34.60 95.87 / 123.93

explorer.exe 9119.99 327.03 / 371.69 315.41 / 355.87 11.62 / 15.82
firefox.exe 9792.64 78.66 / 91.53 21.15 / 20.44 57.51 / 71.09
javaw.exe 22500.40 71.82 / 123.45 10.58 / 20.76 61.24 / 102.69

notepad.exe 34141.24 92.07 / 144.66 2.22 / 1.19 89.85 / 143.47
osql.exe 415.29 26.15 / 32.29 3.29 / 2.29 22.86 / 30.0

outlook.exe 42796.90 219.80 / 267.90 90.00 / 88.90 129.80 / 179.00
pycharm64.exe 850.38 28.51 / 31.13 7.02 / 6.33 21.49 / 24.8

python.exe 248.67 10.93 / 11.17 3.0 / 2.0 7.93 / 9.17
slack.exe 3242.43 96.71 / 119.57 30.57 / 29.57 66.14 / 90.0
word.exe 3341.0 58.88 / 72.0 26.38 / 25.38 32.5 / 46.62

Linux

java 169180.71 133.94 / 222.4 17.44 / 19.63 116.5 / 202.77
python 161755.57 365.71 / 348.31 11.51 / 8.14 354.2 / 340.17
firefox 176843.86 194.22 / 504.56 15.84 / 18.78 178.38 / 485.78
nginx 258367.17 514.27 / 514.13 500.76 / 501.26 13.51 / 12.87
git 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69

docker 9113.02 513.80 / 510.54 501.67 / 497.45 12.13 / 13.09

Average 11779.36 90.36 / 112.38 41.13 / 43.92 49.23 / 68.46

67

causal paths, 94.78 vertices, and 97.48 edges. The provenance graphs for Supply-Chain APT

have an average of 175.93 causal paths, 30.39 vertices and 29.50 edges. The provenance

graphs for Fileless Malware contain an average of 4302.05 causal paths, 177.75 vertices, and

211.96 edges.

4.8.4 Baseline Performance of ML Detectors

To measure the baseline performance of the four different detection models, we tested their

performance against the enterprise and supply chain APT scenarios, as well as our collec-

tion of Fileless malware. The results are summarized in the baseline columns of Table 4.3.

Overall, provenance-based ML detectors have provided practical defense. The GNN-based

detectors have shown 0.95, 0.90 and 0.92 for precision, recall and F1 score, whereas path-

based detectors have shown 0.94, 0.91 and 0.92 for precision, recall and F1 score for their

baselines.

The GAT model’s average recall and F1 scores across our test cases are 0.82 and 0.88.

Notably, the GAT performs relatively poorly against the enterprise and supply chain APTs.

The structure of the APT graphs is similar to that of benign graphs, so the structure-only

GAT struggles to accurately classify this attack. The Prov-GAT model’s average recall and

F1 scores across our test cases are 0.96 and 0.96, respectively. Because Prov-GAT sees node

attributes (e.g., file names, ip addresses, etc.), it leverages this information to perform more

accurate classification. Prov-GAT performs well in all of our categories, demonstrating that

the model is able to take advantage of the additional node attribute information.

The ProvDetector model’s average recall and F1 scores across our test cases are 0.87

and 0.89. Notably, the ProvDetector model performs poorly against the enterprise APT,

similar to the GAT . ProvDetector is an anomaly detection layer on top of Doc2Vec (Le

and Mikolov, 2014), so it has limited awareness of the structure of the causal path. The

enterprise APT contains related programs that are relatively close in the neural embedding

68

space compared to those of our other test cases. The SIGL model’s average recall and F1

scores across our test cases are 0.95 and 0.93. This performance is comparable to that of the

Prov-GAT model. Because SIGL internally learns to reconstruct the entire causal path, it

has strong sensitivity to the context of programs in the causal path.

4.8.5 Feature Space Evasion

In this section, we evaluate the effectiveness of ProvNinja’s suggested ninja attack chains

at evading the detection models. Recall that our feature space modifications include the

addition and replacement of nodes and edges (§4.6.2).

Random gadgets and camouflage. To demonstrate the robustness of the models to

random changes in the attacks, we implemented a variant of our ProvNinja framework

that makes random gadget and camouflage selections. The process of locating conspicuous

edges is the same as in ProvNinja, but gadgets are chosen randomly from the list of

available programs instead of intelligently choosing from the frequency database. Table 4.3

shows that the models still detect random variants of the attacks with high accuracy. The

random modification scheme reduced the recall of the defense models by an average of 4.5%

and reduced the F1 scores by an average of 5%.

ProvNinja-PATH effectiveness. Against the path-based models (ProvDetector and

SIGL), ProvNinja-PATH devised 81 ninja variants of our Enterprise APT, 55 ninja

variants of our supply chain APT, and ninja variants of our Fileless malware collection.

ProvNinja-PATH reduced the average recall and F1 for ProvDetector and SIGL by 57%

and 51%, respectively.

ProvNinja-GRAPH effectiveness. Against the graph-based (GAT and Prov-GAT),

ProvNinja-GRAPH devised 47 ninja variants of our enterprise APT and 28 ninja variants

of our supply chain APT, as well as ninja variants for our Fileless malware collection. Using

the surrogate frequency dataset, ProvNinja-GRAPH was able to identify and modify

69

Table 4.5: ProvNinja evasion for ShadeWatcher (Zengy et al., 2022).

Attack Type
ShadeWatcher Random Perturb. ProvNinja
Recall F1 Recall F1 Recall F1

Enterprise APT 0.96 0.93 0.98(+.02) 0.98(+.05) 0.45(-.51) 0.41(-.52)
Supply Chain APT 0.92 0.90 0.96(+.04) 0.97(+.07) 0.38(-.54) 0.40(-.50)

Average 0.94 0.92 0.97(+.03) 0.98(+.06) 0.42(-.53) 0.41(-.51)

conspicuous edges that contributed heavily to the detection of the attack. Against the

GAT and Prov-GAT models, the ninja attack variants reduced the average recall and F1

scores by 46% and 35%.

Side effects. Gadgets camouflaged with additional events inevitably introduce side effects

(noise) which we measured through differences in graph size compared to the original attack

graph. In Figure 4.3 we see that using longer gadget chains results in more noise in the

provenance graph, as well as worse performance. Long gadgets require additional engineering

effort to craft, increase the number of points of failure, and tend to perform worse than short

gadgets. Therefore, we prefer shorter gadgets since the potential for unintended side-effect

(e.g., noise) is reduced. Also, it is critical to make informed choices about which edges to

add to minimize the chance of detection.

ProvNinja evasion for ShadeWatcher (Zengy et al., 2022). In addition to four

provenance-based ML detectors, we also conducted a comparison study using SOTA GNN-

based IDS ShadeWatcher (Zengy et al., 2022), which is based on recommendation systems.

The results in Table 4.5 show that ShadeWatcher’s recall and F1 score decrease signifi-

cantly when using the ProvNinja approach compared to random perturbations. The APT

variants produced by ProvNinja reduced detection of malicious activity, attributed to its

ability to find benign transformations for malicious edges. This aligns with our expecta-

tions for ProvNinja, which can disguise anomalous graph instances as benign through

edge-level augmentation. The success of ProvNinja against ShadeWatcher, specializing in

fine-grained edge-level detection, demonstrates its capability to counter robust provenance-

based ML detectors.

70

org 1 2 3 4 5
Gadget Length

0

5

10

15

20

25

N
um

be
r o

f E
ve

nt
s

Ad
de

d

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

0.90

0.34
0.41

0.54
0.45

0.59

(a) Enterprise APT.

org 1 2 3 4 5
Gadget Length

0

20

40

60

N
um

be
r o

f E
ve

nt
s

Ad
de

d

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

0.88

0.32
0.28

0.39
0.43

0.54

(b) Supply Chain APT.

org 1 2 3 4 5
Gadget Length

0

5

10

15

20

25

N
um

be
r o

f E
ve

nt
s

Ad
de

d

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

0.93

0.44

0.32

0.61
0.54

0.58

(c) Fileless Malware.

Figure 4.3: Events added and F1 score vs gadget length. In each evaluation scenario, bars
represent number of additional events whereas solid lines are for F-1 score trends.

This study compares the effectiveness of ShadeWatcher (Zengy et al., 2022) against

enterprise and supply chain APT scenarios compared with ProvNinja’s adversarial per-

turbations, and random perturbations. Table 4.5 shows that the recall and F1 score of

ShadeWatcher against anomalous graphs generated by the Enterprise and Supply-Chain

APTs decrease significantly when ProvNinja is used to mask the attacks, but stays the

same when random perturbations are applied. On average, there is a 64% decrease in both

recall and F1 score when ProvNinja is used, and 9% decrease in recall and 6% decrease in

F1 score when random semantically equivalent perturbations are done.

The findings indicate that the APT variants produced by ProvNinja exhibit signifi-

cantly reduced detection of malicious activity compared to the original APT attacks. We

attribute this outcome to the ability of ProvNinja to find equivalent benign transforma-

tions for malicious edges, effectively hiding them from the IDS. This outcome is precisely

what we expect from the application of ProvNinja, where anomalous graph instances

can masquerade as benign through self-augmentation on an edge-level, reducing the visible

attack surface instead of polluting the search graph. The success of ProvNinja against

ShadeWatcher (which specializes in fine-grained, edge-level detection) confirms its ability

to combat robust provenance graph-based IDSs.

71

Table 4.6: ProvNinja’s performance under White-box, Black-box and Blind threat model,
evaluated for two configurations of Blind (ProvNinja) and Blind (random perturbation).

Defense Model
White-box Black-box Blind Blind

(ProvNinja) (ProvNinja) (ProvNinja) (Random Pert.)

Recall F1 Recall F1 Recall F1 Recall F1

ProvDetector 0.23 0.27 0.30 (+.07) 0.35 (+.08) 0.60 (+.37) 0.67 (+.40) 0.89 (+.66) 0.91 (+.64)
SIGL 0.31 0.35 0.38 (+.07) 0.47 (+.12) 0.69 (+.38) 0.74 (+.39) 0.97 (+.66) 0.95 (+.60)

GAT 0.38 0.41 0.42(+.04) 0.51 (+.10) 0.75 (+.37) 0.77 (+.36) 0.91 (+.53) 0.93 (+.52)
Prov-GAT 0.44 0.47 0.51 (+.07) 0.61 (+.14) 0.78 (+.34) 0.80 (+.33) 0.96 (+.52) 0.97 (+.50)

ShadeWatcher 0.36 0.33 0.42 (+.06) 0.41 (+.08) 0.75 (+.39) 0.72 (+.39) 0.97 (+.61) 0.97 (+.64)

Average 0.34 0.37 0.41 (+.06) 0.47 (+.10) 0.71 (+.37) 0.74 (+.37) 0.94 (+.60) 0.95 (+.58)

4.8.6 White-box and Blind Threat Models

We also evaluated ProvNinja, mainly implemented for a black-box threat model, under

relaxed white-box and stricter blind threat models. To showcase its effectiveness in finding

suitable replacement gadgets, we evaluate the blind threat model under two design choices

regarding replacement gadget selection: with ProvNinja and with random perturbation.

In the white-box model, the attacker has complete access to the defender’s model in-

ternals and data, enabling them to use a white-box GNNExplainer (Yuan et al., 2022) to

supplement the regularity score when deciding which events to replace and to find the re-

placement gadgets. In the blind threat model, attackers have no prior access to the defender’s

environment, model, or data. Therefore, they rely on a public dataset to construct a sur-

rogate model and identify rare events. We consider two types of blind attacks. The blind

attack with ProvNinja constructs a model using the public dataset for appropriate gad-

get replacements, while the blind attack with random perturbation attempt makes random

selections for its gadgets.

As shown in Table 4.6, recall and F1 scores are lower for weaker defense models across

different threat models, which is expected since it is easier to create ninja variants against

weaker defense models. Our results demonstrate that SIGL and Prov-GAT achieve higher

recall and F1 scores compared to that of ProvDetector and GAT for different threat models.

72

Also, not surprisingly, we notice that the performance of the ninja variants improves when

they are tested against defense models where the attacker’s model closely approximate the

defender’s model.

We observe in Table 4.6 that the difference between black-box and white-box in terms

of recall and F1 scores is 6% and 10%, respectively, while the difference between blind

threat model that uses ProvNinja and white-box is 37% for both recall and F1 score. The

larger difference between blind where ProvNinja was used and white-box is attributed to

the varying workloads between the surrogate and the defender’s dataset. Therefore, the

successful evasion of the surrogate model does not guarantee the evasion of the defender’s

model, as most of the evasive gadgets created from the surrogate data did not transfer over

to the defender’s model.

However, ProvNinja retains partial effectiveness even under the blind threat model.

The blind attack that does not use ProvNinja (i.e., random perturbation attack) had a

60% increase in recall and a 58% increase in F1 score compared to the white-box attack, which

is worse than ProvNinja’s 37% increase in both recall and F1 score under the same threat

model. We note that the attacker’s surrogate model was trained on the publicly available

but limited engagement DARPA dataset; an attacker with more comprehensive provenance

data could train a stronger surrogate model and achieve better blind performance. Despite

this limitation, we consider even one successful evasive attack as a successful outcome for

that APT stage, following the approach of other work (Goyal et al., 2023).

4.8.7 Problem Space Realization

To further refine the feature space of gadgets for implementing problem space evasion attacks,

we employ the recommendations from §4.7. Moreover, we assess the amount of effort (in

analyst person hours) necessary to execute a gadget chain.

Table 4.7 summarizes the filtration process of 211 feature space candidates according to

the rules outlined in §4.7, resulting in 22 distinct variations for enterprise and supply chain

73

Table 4.7: Number of unviable candidates removed by each recommendation §4.7.2.

Attack
Type

Feature
Space
Attacks

Disturbances to End User and
System Monitors

Program-Specific
Considerations

Blacklisted Programs and
Suspicious Behaviors Surrogate

Model
Discrepancies

Problem
Space
AttacksGUI

interruptions

Resource
intensive
programs

External
network conn.
and disruption

Insufficient
privilege

Special
program
sequences

Blacklisted
programs

Modification
to system
resources

Modification
to system

configuration

Enterprise APT 128 7 5 25 17 23 6 11 8 12 14
Supply Chain APT 83 12 13 10 3 9 2 14 7 5 8

APT scenarios. In the Enterprise APT scenario, 128 initial feature space candidates were

reduced by 89% to 14 problem space attacks, with most discarded attack variants involving

gadget chains requiring external network connections; these variants could have triggered the

defender’s firewall rules, raising unnecessary suspicion. In the Supply-Chain APT scenario,

83 initial feature space candidates were reduced by 90% to yield 8 problem space attacks,

with program unavailability posing the greatest obstacle to attack realization.

Attack variant example that includes singleton programs: firefox.exe → svchost.exe

→ wininit.exe → services.exe → sshd.exe → explorer.exe → notepad.exe. This

gadget chain aims to inconspicuously achieve privilege escalation through notepad.exe while

starting at firefox.exe, but runs the risk of creating a new instance of the singleton program

sshd.exe, which listens to sockets and manages remote system logins. Multiple concurrent

instances of sshd.exe would be clearly abnormal, alerting the defender.

A gadgeted path whose objective is to execute notepad.exe (a privilege escalation

malware) inconspicuously from the system’s entry point, firefox.exe will include these

gadgets: firefox.exe → svchost.exe → wininit.exe → services.exe → sshd.exe →

explorer.exe → notepad.exe. In the gadget chain, sshd.exe is used but in a benign set-

ting only single instance is allowed to run at a time since the program listens to sockets and

manages remote system logins. This gadget chain runs the risk of having two instances of

sshd.exe running if a remote user logs in, therefore, raising the suspicion among security

experts.

An example where a gadget chain was discarded following the “external network” recom-

mendation is: firefox.exe → officeclicktorun.exe → schtasks.exe→ services.exe →

74

10 25 50 75
Attack Graph Size (# of Edges)

5

10

15

20

25

Av
g.

 T
im

e
(H

ou
rs

)

4

15

23

28

3

7

13
15

Realization Effort

Enterprise APT
Supply Chain APT

(a) Time required to actualize the gadget for dif-
ferent attack graph.

50 100 200 500
Graph Size (# of Edges)

10

20

30

40

50

60

At
ta

ck
 G

ra
ph

 S
iz

e
(#

 o
f E

dg
es

)

15

33

59
66

7

19

38
45

Attack Graph Representation

Enterprise APT
Supply Chain APT

(b) Composition of attack graphs in comparison
to the whole graph.

Figure 4.4: Realization effort for larger graphs takes more time, but there is a diminishing
result since the number of rare edges and gadgets are limited for a particular attack stage.

msmpeng.exe → runtimebroker.exe → werfault.exe → explorer.exe → notepad.exe.

The program in question is officeclicktorun.exe. In a benign setting, it manages updates

for Microsoft Office products, coordinates resources, and handles background streaming.

Checking for and deploying updates result in a significant number of external network reads,

which must be mimicked to properly impersonate officeclicktorun.exe.

Manual efforts for ProvNinja evasion. We actively analyzed the effort required to

implement ProvNinja’s evasive attacks, estimating it in terms of security analysts’ hours

and taking graph size into account as a key factor. This effort encompasses tasks such as:

(1) running ProvNinja to obtain filtered feature space gadgets; (2) meticulously evaluating

problem space recommendations to discard evasive gadgets from the filtered list of feature

space gadgets; (3) selecting gadgets for implementation with various pentesting frameworks;

and (4) implementing the selected gadgets in the problem space. Results in Figure 4.4a

reveal that as attack graphs grow larger, implementing evasive attacks becomes increasingly

time-consuming.

75

Interestingly, as shown in Figure 4.4b, we found that the implementation effort is sublin-

ear in the size of the attack graph. Since the majority of system events are benign, the attack

graph’s size is also sublinear in the total graph size. When comparing the Enterprise APT

scenario, we discovered that implementing the Supply Chain APT gadgets takes less time.

This is attributable to the numerous replacement options available from surrogate datasets

that closely resemble defender datasets (illustrated in §4.8.8). This similarity enables the

creation of many gadgets using the surrogate dataset on the defender model.

We have analyzed the estimated effort required to implement ProvNinja’s evasive at-

tacks in terms of domain experts’ hours, taking into account the graph size as a key factor.

The domain experts’ hours include several tasks such as running ProvNinja to obtain the

filtered feature space gadgets, carefully evaluating the problem space recommendations to

reject evasive gadgets from the filtered list of feature space gadgets, and selecting a gadget

to implement using different pen-testing frameworks. The result presented in Figure 4.4a,

confirms that implementing evasive attacks becomes increasingly time-consuming for larger

attack graphs.

Interestingly, we observe that the implementation effort is sublinear in the size of the

attack graph as shown in Figure 4.4b. The size of the attack graph is also sublinear in

the total graph size because the majority of system events are benign. Compared to the

Enterprise APT scenario, the implementation of the Supply Chain APT gadgets requires

less time. This is due to the availability of numerous replacement options from the surrogate

datasets, which are similar to the defender datasets (as illustrated in §4.8.8). This similarity

allows the creation of many gadgets using the surrogate dataset on the defender model.

This can be attributed to two factors. Firstly, the number of rare edges is limited, so

generating larger graphs for a specific attack instance does not add any extra rare edges,

except for those added due to the attack itself. Secondly, the number of available gadgets is

limited, which also limits the ability to generate new paths for larger graphs.

76

Table 4.8: The detection results of the attacks generated from the benign, surrogate, and
random dataset (lower numbers indicate better evasion). Rare edges and the gadget chains
are found using the data. The random data is generated by intermixing DARPA TC datasets.

Attack Type
GNN-Based
Detectors

Benign Data Surrogate Data Random Data

Recall F1 Recall F1 Recall F1

Enterprise APT
GAT

0.26 0.35 0.37 (+.11) 0.54 (+.19) 0.71 (+.45) 0.82 (+.47)
Supply Chain APT 0.29 0.22 0.44 (+.15) 0.53 (+.31) 0.96 (+.67) 0.91 (+.69)
Fileless Malware 0.63 0.72 0.71 (+.08) 0.77 (+.05) 0.93 (+.30) 0.94 (+.22)

Enterprise APT
Prov-GAT

0.17 0.28 0.25 (+.08) 0.37 (+.09) 0.75 (+.58) 0.74 (+.46)
Supply Chain APT 0.21 0.34 0.28 (+.07) 0.56 (+.22) 0.88 (+.67) 0.92 (+.58)
Fileless Malware 0.55 0.66 0.58 (+.03) 0.67 (+.01) 0.95 (+.40) 0.96 (+.30)

Average 0.35 0.43 0.44 (+.09) 0.57 (+.15) 0.86 (+.51) 0.88 (+.45)

Attack Type
Path-based
Detectors

Benign Data Surrogate Data Random Data

Recall F1 Recall F1 Recall F1

Enterprise APT
ProvDetector

0.18 0.15 0.23 (+.05) 0.31 (+.16) 0.81 (+.63) 0.88 (+.73)
Supply Chain APT 0.25 0.23 0.35 (+.10) 0.30 (+.07) 0.94 (+.69) 0.93 (+.70)
Fileless Malware 0.29 0.41 0.33 (+.04) 0.43 (+.02) 0.93 (+.64) 0.92 (+.51)

Enterprise APT
SIGL

0.25 0.36 0.30 (+.05) 0.41 (+.05) 0.99 (+.74) 0.99 (+.63)
Supply Chain APT 0.29 0.38 0.38 (+.09) 0.43 (+.05) 0.95 (+.66) 0.92 (+.54)
Fileless Malware 0.43 0.51 0.47 (+.04) 0.57 (+.06) 0.97 (+.54) 0.95 (+.44)

Average 0.32 0.39 0.39 (+.08) 0.50 (+.11) 0.93 (+.65) 0.93 (+.59)

4.8.8 Surrogate Dataset Effectiveness

In this section, we evaluate ProvNinja’s robustness to surrogate model and its frequency

summary with an ablation study and a brief analysis of the domain shift between the DARPA

dataset and the benign dataset.

In Table 4.8, we estimate an upper bound on ProvNinja’s performance by initially pro-

viding it with the true benign dataset (e.g., target network dataset) to create gadgets, which

significantly reduces the recall rate and F1 scores of the models. Next, we utilize ProvNinja

with the surrogate frequency dataset, incorporating progressively increasing Gaussian noise;

we avoid negative event counts by only considering additive noise. Lastly, we try using

ProvNinja with fully randomized data, which does not significantly reduce the recall and

F1 scores of the models and performs no better than trivial transformations.

77

SIGL

ProvDetector
Prov-GAT

S-GAT

Defense Model

S-GAT

Prov-GAT

ProvDetector

SIGL

Ta
rg

et
 M

od
el

0.48 0.42 0.59 0.49

0.51 0.49 0.41 0.51

0.45 0.34 0.95 0.92

0.47 0.38 0.94 0.91

Enterprise APT

(a) Enterprise APT transferability.

SIGL

ProvDetector
Prov-GAT

S-GAT

Defense Model

S-GAT

Prov-GAT

ProvDetector

SIGL

Ta
rg

et
 M

od
el

0.44 0.40 0.64 0.59

0.47 0.41 0.55 0.56

0.53 0.37 0.97 0.92

0.45 0.40 0.94 0.93

Supply Chain APT

(b) Supply Chain APT transferability.

Figure 4.5: Attack transferability visualization. Each cell contains the F1 score of the defense
model (columns) that is measured against the evasive attacks crafted against a target model
(rows). Lower values (lighter colors) indicate better evasion.

4.8.9 Transferability Evaluation

Attack transferability (Demontis et al., 2019) is an important metric to determine how ef-

fective a particular ninja attack is against other models. We evaluated the transferability

of the actualized ninja attacks designed for each of the four ML detectors for both our en-

terprise and supply chain APT scenarios. The key insight is that ninja attacks generated

against strong ML detectors (e.g., Prov-GAT and GAT) transfer well to weaker ML de-

tectors (ProvDetector and SIGL). In Figure 4.5, we show that the ninja attacks are highly

transferable across model architectures with two notable exceptions: the attacks designed

against path-based ML detectors were easily detected by the graph-based ML detectors be-

cause ProvNinja-PATH ’s gadgets are not camouflaged; the attacks designed for GAT did

not transfer perfectly to Prov-GAT because Prov-GAT sees more information than GAT .

78

4.9 Related Works

Host- and provenance-based IDS. Various approaches have been proposed (Milajerdi

et al., 2019; Hossain et al., 2020, 2018; Fang et al., 2022; Xu et al., 2022) leveraging sys-

tem provenance to trace stealthy and long-running APT campaigns. Several heuristics have

been proposed to prioritize edges (Milajerdi et al., 2019) that are likely to involve mali-

cious semantics referring to a threat intelligence (ATT&CK®, 2022b) source or assigning

tags (Hossain et al., 2020) that propagate contextual hints to related nodes. Depcomm (Xu

et al., 2022) summarizes the graph by creating process-centric communities (clusters) that

are connected using system interactions that map the information flow. These communities

include important sequences of events that are used for threat detection as they contain

important system semantics and are likely to hold the malicious paths.

The large-scale deployment of low-level syscall event collection necessary for system

provenance data collection inherently incurs colossal storage pressure, posing substantial

challenges in storing and streaming events to support various analysis tasks (Inam et al.,

2023). Therefore, substantial research has therefore been dedicated to mitigate the storage

pressure while supporting various security analysis tasks(Hossain et al., 2018; Michael et al.,

2020). Clearly, utilizing system provenance for cybersecurity is a popular endeavor, but new

techniques have not been thoroughly hardened against dedicated adversaries. For defenders

and researchers, ProvNinja provides an efficient way to generate attack sequences that are

difficult to detect with traditional approaches.

Adversarial ML. Adversarial ML research has gained momentum since Kurakin et al. (Ku-

rakin et al., 2016) first proposed an attack on an established model for image recognition.

Since then, over 5,000 adversarial ML research papers have been published in the last

decade (Carlini, 2019), including numerous works (Nguyen et al., 2015; Moosavi-Dezfooli

et al., 2016) aiming to deceive ML models across different domains and modeling approaches.

79

Tramer et al. (Tramèr et al., 2017) has proposed adversarial training to increase the robust-

ness of ML models.

Problem space translation. Problem space realization of adversarial examples has been

explored by about 80 papers for in various security domains — malicious PDFs, network in-

trusion detection systems, android malware detection etc. Pierazzi et al.(Pierazzi et al., 2020)

conducted a comprehensive survey on problem space evasive attacks, providing a framework

with four constraints to be considered during the realization. They also implemented their

own evasive attacks against an ML-based malware detector analyzing 170K Android malware

samples. Using their framework, we discusses unique challenges of problem space realization

in the provenance domain, which is empirically evaluated in §4.8.7. Evasive attack realiza-

tion for the provenance domain has turned out be difficult, as the problem space is distant

from the feature space.

Provenance mimicry attacks. Mimicry attacks against provenance-based IDS are ad-

vancing and improving rapidly. (Goyal et al., 2023)demonstrated the first versions of such

attacks in early 2023, which consistently evaded a wide variety of provenance-based IDS.

ProvNinja improves upon the previous work by reducing the number of added system

events and extending the tolerable differences between the program distribution in the at-

tacker’s dataset and the defender’s dataset. In the coming years, as provenance-based IDS

gains popularity, we expect to see an arms race of mimicry attacks and defenses, which will

ultimately improve the security overall.

Evasive attack transferability is another important research direction in adversarial ML;

(Demontis et al., 2019) conducted experiments on linear and non-linear models to evaluate

why some adversarial attacks transfer better than others. They provided insights on what

aspects contribute to evasive attack transferability and introduced new criteria to measure

attack transferability.

80

CHAPTER 5

EXPLAINING GNN-BASED PIDS – PROVEXPLAINER

5.1 Problem Statement

Our research addresses explainability in GNN-based security models (Cheng et al., 2024;

Rehman et al., 2024; Goyal et al., 2024) built on system provenance graphs, tackling a core

issue in the security domain. The complexity of explaining GNN decisions is exacerbated by

graph structural learning, which adds to the inherent complexity of Neural Networks (NNs).

Existing studies on GNN explainability (Yuan et al., 2022; Ying et al., 2019; Yuan et al.,

2021; Luo et al., 2020; Herath et al., 2022; Ganz et al., 2023) often fail to effectively map

back to system behaviors in the provenance domain. To bridge this gap, our design approach

aims to explain GNN decisions by employing a surrogate DT equipped with interpretable

security-aware graph structural features.

5.2 Threat Model

Our threat model assumes the integrity of on-device data collection, relying on provenance

records secured by existing systems (Wang et al., 2020; Han et al., 2021; Hassan et al.,

2019; Mukherjee et al., 2023; Liu, Zhang, Li, Jee, Li, Wu, Rhee, and Mittal, Liu et al.;

Cheng et al., 2024; Rehman et al., 2024; Goyal et al., 2024). Our primary objective is to

generate security-aware explanations to aid security practitioners and increase their trust in

the GNN’s decisions. We consider graph-level classification and anomaly detection tasks; ex-

plaining GNN decisions in node/edge level tasks is outside the scope of this work. We assume

that a knowledgeable security practitioner can differentiate between explanations that align

with the ground truth and those that do not, ensuring the validity of our surrogate-based

explanations only when they match the GNN model’s accurate predictions. Systematically

81

Provenance
Graph Dataset

GNN
model

 Surrogate Model
Training

 Feature Extraction

Security-Aware
Explanations

ProvExplainer

 Surrogate Model
Interpretation

Figure 5.1: ProvExplainer framework.

generating an accurate and trustworthy ground truth for application, malware, and APT be-

havior is a challenging open problem. In this dissertation, we approximate the ground truth

using publicly available documentation (§2.7). In line with recent literature on GNN expla-

nation (Herath et al., 2022; Warnecke et al., 2019, 2020), adversarial samples are outside the

scope of the paper. Creating robust detection and explanation systems that can withstand

adversarial manipulation (Goyal et al., 2023; Mukherjee et al., 2023), procedural dataset

poisoning, and model manipulate are critical open research problems that are orthogonal to

our work.

5.3 ProvExplainer Overview

Given a GNN model built with a system provenance dataset, we apply ProvExplainer in

three stages, refer to Figure 5.1.

Stage 1: Extract Security-aware Features (§5.4). Using a data-driven approach (Algo-

rithm 2), we extract security-aware subgraphs (Table 5.1) that exhibit distinctions between

benign and anomalous datasets (Figure 5.3). These subgraphs identify attack vectors used

by APTs.

Stage 2: Train an Interpretable Surrogate Model (§5.5). Next, we utilize an extensive

and diverse system provenance dataset to train an interpretable surrogate DT to agree with

the GNN using the extracted features. By decoupling feature engineering from decision-

82

APT Attack Vector Subgraph Structure

Initial Compromise §5.4.1 Staging Dropper Triangle, Cascade

Establish Foothold §5.4.2 Cloning Clone Triangle, Probe Triangle

Deepen Access §5.4.3 Inheriting Kite, Jellyfish

Sharing Square

Lateral Movement §5.4.4 Accessing Exploding Kite, Exploding Square

Look, Learn, and Remain §5.4.5 Exfiltrating External IP Use

Table 5.1: Summary of program behavior patterns.

making, we project the GNN’s decision boundary onto the interpretable surrogate model’s

feature space.

Stage 3: Interpret the Surrogate Model (§5.6). To extract the explanation for a

detection using the surrogate DT, we designed Algorithm 3 to extract the graph nodes

that contribute to the surrogate DT’s decision. These explanations are valid only when the

surrogate agrees with the GNN.

ProvExplainer examines graph structural features linked to system actions through

extensive data studies supported by security domain expertise. Our security-aware fea-

tures enabled surrogate DTs to achieve 88% agreement on APT and Fileless Malware de-

tection, and 83% agreement on program classification. We curated an extensive dataset

using in-house data collection, APT datasets from various sources (i.e., industry standard

DARPA (DARPA, 2019) and ProvNinja (Mukherjee et al., 2023)), and real-world Fileless

malware samples from (Barr-Smith et al., 2021) to validate the generalizability of ProvEx-

plainer. ProvExplainer improves precision by 9.14% and recall by 6.97% compared to

GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), and SubgraphX (Yuan

et al., 2021), which are the current state-of-the-art GNN explainers. Furthermore, combin-

ing ProvExplainer with state-of-the-art GNN explainers enhances precision and recall by

7.22% and 4.86%, respectively, over the best individual explainer.

83

Algorithm 2: Graph Structural Feature Extraction

Input: Dataset D, Node size n
Output: Sorted subgraphs by largest difference in count

1 subgraphs ← GetFeasibleSubgraphs(n)
2 count ← []
3 foreach (graph, label) in D do
4 subgraph cnt ← {sg ∶ CountSubgraphs(graph, sg) ∣ sg ∈ subgraphs}
5 counts.append([subgraph cnt, label])
6 Aggregate the subgraph cnt count per label
7 Calculate the subgraph cnt difference between the labels
8 return subgraphs sorted by largest difference in count

5.4 Graph Structural Features

Subgraph patterns are the foundation of ProvExplainer’s interpretable graph features.

They are localized in the provenance graph and correspond to distinct program behaviors

in computer systems. The security landscape is continuously evolving, with the MITRE

ATT&CK framework documenting over 367 attack vectors (ThreatIntelligence, 2023), and

new vectors being added regularly. To adapt to evolving threats (Barbero et al., 2022) by

automatically extracting structural features from data, we designed Algorithm 2 to systemat-

ically extract subgraph patterns that exhibit a distribution difference between classes within

a dataset. We first generate all semantically valid subgraphs of a given size. For example,

every edge must contain to at least one process node because only processes can take actions.

We then count the instances of each of these subgraphs for each class in the dataset. Finally,

we sort the subgraphs by the magnitude of the distribution difference between the classes to

obtain the most effective structural features.

However, subgraph pattern mining is resource intensive and scales exponentially in the

size of the subgraphs; there are 56 semantically valid 3-node graphlets, and even adding

just one more node increases that count to 887. Optimizing the identification and mining of

subgraphs is a critical active research area (Paramonov et al., 2019; Jha et al., 2015; Kolda

84

Clone
Triangle

Probe
Triangle

c ce e e r

rr
Square

r r

rr
Exploding Square

r rrr

rr
Exploding Kite

e c w

c r

Dropper
Triangle

e c w c ce w e w
r r

Cascade

Jellyfish

rr
Kite

e c w

Staging Cloning

Inheriting Sharing

Accesing

Figure 5.2: Structural Graph Features. Squares are processes and circles are files. Write
edges are blue, read edges are green, execute edges are red, and process creation edges are
orange.

B A
0

2000

Dropper Tri.

B A
0

1000

Clone Tri.

B A
0

500

Probe Tri.

B A
0

5000
Kite

B A
0

100000

Square

B A
0

1000
Exp. Kite

B A
0

1000
Exp. Square

B A
0

10000

Cascade

B A
0

200000
Jellyfish

B A
0

1000

B A
0

1000

B A
0

25

B A
0

100

B A
0

100000

B A
0

500

B A
0

2000

B A
0

20000

B A
0

500

B A
0

25

B A
0

100

B A
0.05

0.00

0.05

B A
0

500

B A
0

1000

B A
0.05

0.00

0.05

B A
0

50

B A
0

50

B A
0

5000

DARPA

APT from [41]

Filess Malware

Feature Distribution Across Datasets

Figure 5.3: Distribution of nine subgraphs (Table 5.1) in different datasets. B means benign
and A means anomaly.

et al., 2014; Seshadhri et al., 2013; Ugander et al., 2013). After analyzing the 56 semantically

valid 3-node graphlets and selecting the top 3 strongest contributors, we expedited the

analysis of larger graphlets by applying domain expertise and data study to significantly

reduce the search space. This way, we obtained 9 patterns that capture common attack

vectors (Figure 5.2). We validated these patterns by measuring the distribution difference

across data classes (Figure 5.3). Although the Probe Triangle and Exploding Kite patterns

are not well-represented in the Fileless Malware dataset, their strong signals in the APT

85

datasets justify their inclusion. Subgraph structures that map directly to attack vectors aid

in generating security-aware explanations.

5.4.1 Initial Compromise

Staging. A prevalent attack vector in conducting the initial compromise (ATT&CK®,

2018b) as seen in DARPA attacks (DARPA, DARPA) is to save the malicious logic in tem-

porary locations (e.g., \tmp\ or C:\Users\AppData\Local\Temp) and then execute it. These

temporary locations are often whitelisted by defense mechanisms. The attacker then per-

forms initial compromise by executing the payload. Fileless Malware also contains “dropper”

behavior (Sood and Zeadally, 2016; Phillips, 2021). The Dropper Triangle and the Cascade

structures (Figure 5.2) capture the dropper behaviors.

5.4.2 Establishing a Foothold

Cloning. Attackers taking advantage of multiprocessing-based parallelism for redundancy

and efficiency to replicate malware instances to overload the system’s defenses is emblem-

atic of establishing a foothold (ATT&CK®, 2017). In the Clone Triangle, a parent and

child process both execute the same program. Clone triangles are also common in benign

programs that use multiprocessing as part of their standard workflow, such as sc.exe and

explorer.exe. In the Probe Triangle, The attacker first probes the payload and necessary

library files by reading them to ensure their existence before executing the payload, which is

common in cryptominers (Crowdstrike, 2018). This avoids suspicious events (e.g., accessing

nonexistent files) from occurring and triggering defenses. While probing and cloning alone

are not sufficient to indicate malicious activity, they amplify the importance of other attack

behaviors. The Clone Triangle and the Probe Triangle (Figure 5.2) efficiently identify the

cloning attack vector.

86

5.4.3 Deepen Access

Inheriting. After gaining initial access and establishing a foothold, attackers scale up

their operations to deepen access (ATT&CK®, 2020). These attackers create multiple child

processes that execute the same payload. Because the children inherit their objectives from

the parent, these parent-child malware pairs read similar library files. Advanced malware

writers (Crowdstrike, 2018) also update the configuration inside the malware payload to

keep track of the system state to maximize resource consumption (e.g., CPU cycles, RAM,

and network bandwidth) without triggering usage alerts. The Kite and the Jellyfish shape

(Figure 5.2) efficiently identify inheriting behavior.

Sharing. Malware such as Banking Trojans (sca, 2019; Grammatikakis et al., 2021) do not

directly create malware that access the sensitive documents but rather they create multiple

process chains where the last process in the chain does the malicious behavior. APTs also

create such process chains to obscure the point of entry and spread throughout the system. In

these attacks, processes with distant ancestral relations demonstrate operational similarities

by reading the same library files. The Square (Figure 5.2) pattern efficiently identifies this

resource sharing behavior.

5.4.4 Lateral Movement

Accessing. After deepening access, the attacker reads sensitive resources (e.g., cookies

and credential files) to enable lateral movement (ATT&CK®, 2018c) through the sys-

tem. Capturing the attacker’s intermediate objectives reveals additional resources the de-

fender must protect. For example, in one of DARPA Trace’s APT scenarios, the at-

tacker reads sensitive configuration and cookies from /home/admin/.mozilla/firefox/,

and /usr/local/firefox-xx/obj-x86_64-pc-linux-gnu/ to advance their attack. The

Exploding Kite and Exploding Square shape (Figure 5.2) identifies the resource accessing

behavior.

87

5.4.5 Look, Learn, and Remain

We differentiate network nodes based on whether their IP addresses are internal or external to

the system’s network. This critical feature requires minimal engineering effort but holds high

security importance, as network behavior is extremely hard to hide. DoS malware (Bareckas,

2022) and APT threat actors commonly exfiltrate (ATT&CK®, 2018a) data to their external

command and control server. This behavior leads to a network node with a destination IP

that is external to the local network.

5.5 Creating Surrogate Decision Trees (DTs) using Graph Structural Features

To obtain explanations from our security-aware graph structural features, we use them to

train a global surrogate DT. By training a DT to agree with the predictions of a GNN

model, we can interpret the DT to gain insights about the GNN’s decision-making process.

To achieve the best agreement results, we enhance traditional DT training with data aug-

mentation that iteratively increases the weight of incorrectly classified samples (Jacobs et al.,

2022).

We begin with a labelled set of graphs DG = (G, Y), which is used to train the GNN.

GNN’s predictions on DG are collected, yielding GNN (DG) = Y
′
. To prepare the dataset for

training the DT, we extract the graph structural features (§5.4) S and associate them with

the GNN’s predictions Y
′
to create a labelled feature dataset DF = (S, Y ′), which we split

into train, validation, and testing sets to evaluate the surrogate DT.

Leveraging the methods of Jacobs et al. (Jacobs et al., 2022), we use two-layer iterative

dataset augmentation to train a series of DT models. At each iteration of the inner loop,

all misclassified samples are duplicated to increase their weight in the next iteration; from

this series of models, we select the one with the highest agreement among the DTs. This

process is repeated several times in the outer loop, then the surrogate model with the highest

88

mean agreement among those high-agreement DTs is selected as the final surrogate model

for explanation. This improves the stability of the explanations, but at the cost of some

agreement on smaller datasets. Because the surrogate model is aggregated over several

iterations, the final resulting model is less sensitive to small changes in the training set.

Algorithm 3: Explanation for graph G

Input: graph G, decision tree DT , explanation size k, max depth D
Output: Top-scoring k nodes from node rankings

1 Function ExplainGraph(G, DT , k, D):
2 node rankings ← {v ∶ 0∣∀v ∈ G.V }
3 dp ← GetDecisionPath(DT,G)
4 for depth d = 1 to D do
5 shape ← shape corresponding to rule at depth d in dp

6 importance ← 1

d

7 foreach node v ∈ G.V that participates in shape do
8 impact ← # instances of shape that v participates in
9 score ← importance ⋅ impact

10 node rankings[v] ← max(node rankings[v], score)

11 return the top-scoring k nodes from node rankings

5.6 Interpreting GNN-based IDS Detections Using Surrogate DTs

Once the surrogate DT is trained, not only can we qualitatively analyze the DT for global

insights, but we can also use it to explain decisions about individual graphs. Similar to

existing explainers, we will use Algorithm 3 to assign an importance score to each node

in the graph, then return the most important nodes. Each decision node within the DT

consists of a subgraph structure and a threshold. Decision nodes closest to the DT root have

the greatest influence on the decision path. In our experiments, we empirically found that

considering DT nodes up to a depth of D = 4 yielded the best explanations in our datasets;

lower depths missed shapes that were necessary for some complex APT scenarios and higher

depths incorporated irrelevant system behaviors.

89

The crux of this methodology lies in ranking the provenance graph nodes based on two

pivotal criteria: the importance of the decision node within the decision tree (assigning

more importance to nodes that are closer to the root) and the impact of the node on the

rules, assessed by the node’s biggest contribution to the features used by the rules. Such an

approach not only aids in pinpointing critical nodes but also in understanding their roles in

the broader context of system interactions. System attributes (e.g., process/file names, and

socket IP/port) can be extracted as a post-processing step. Finally, we use the interpretable

surrogate DT to construct actionable, security-aware explanations about individual decisions.

Because ProvExplainer yields a global surrogate DT, domain experts can analyze it to

improve their understanding of the GNN’s decision-making process.

Algorithm 4: Combined explanation for graph G

Input: graph G, explanation size k, ProvExplainer’s node ranking R1,
general-purpose explainer’s node ranking R2

Output: Combined node ranking
1 Function EnsembleExplanation(G, k, R1, R2):
2 combined ← ∅
3 for i = 1 to k do
4 if i mod 2 = 1 then
5 combined ← combined ∪ argmaxv∈G.V \combined(R1(v) ∣ v ∉ combined)
6 else
7 combined ← combined ∪ argmaxv∈G.V \combined(R2(v) ∣ v ∉ combined)

8 return combined

5.7 Combining SOTA GNN Explanation Methods with ProvExplainer

When explainers are viewing the GNN’s decisions from different angles, it is often beneficial

to consider input from multiple explanations to create a combined view of the important

elements of the graph. In Algorithm 4, we present a method for merging the top ranking

nodes from multiple explainers’ perspectives. By going through the explainers in a round-

90

robin fashion, we ensure that the top-ranking nodes from each explainer are fairly represented

in the final result.

ProvExplainer provides explanations that are guided towards security-relevant graph

structures, while traditional GNN explainers focus entirely on structures that are important

to the GNN model.

5.8 Evaluation

In this section, we evaluate ProvExplainer’s effectiveness in explaining stealthy attacks.

We aim to answer the following research questions (RQs):

RQ1: Explanation Accuracy. Can ProvExplainer explain APT and Fileless mal-

ware detection (§5.8.5, and §5.8.6)?

RQ2: Comparison with SOTA GNN Explainers. How do the explanations of Prov-

Explainer compare against those of SOTA GNN explainers (GNNExplainer (Ying

et al., 2019), PGExplainer (Luo et al., 2020), and SubgraphX (Yuan et al., 2021))

(§5.8.7)?

RQ3: Explanation Ensemble. Can ProvExplainer’s explanations be combined with

those of SOTA GNN explainers to improve explanation stability (§5.8.7)?

5.8.1 Evaluation Protocols

For APT detection, Fileless Malware detection, and program classification tasks, we lever-

aged three kinds of datasets: (1) publicly available APT attack simulations (DARPA,

2019; Mukherjee et al., 2023), (2) execution traces of Fileless Malware (Barr-Smith et al.,

2021), and (3) program execution traces collected from our in-house testbed. We im-

plemented two general purpose SOTA GNN models: GAT (Veličković et al., 2017) and

GraphSAGE (Hamilton et al., 2017), following the approach of recent explanation liter-

ature (Herath et al., 2022; Kosan et al., 2023). Recent GNN based anomaly detection

91

systems (Zengy et al., 2022; Rehman et al., 2024) rely on custom node and edge embeddings

for security tasks, so we did not evaluate against these specialized solutions. We conducted

an ablation study and evaluated the explanations given by ProvExplainer against those

of SOTA GNN explainers (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021).

Program Classification. We choose popular programs whose runtime behaviors are dic-

tated by command line arguments, such as python and powershell.exe. We also selected

firefox.exe because it is a versatile program with different usages and almost all the

FiveDirections APT attacks in the DARPA dataset exploited firefox.exe to gain access

to the system. Therefore, we wanted to explore how the command line arguments relate

to the behavior of firefox.exe. The full list of categories for each program is provided in

Table 5.2, and representative graphs are illustrated in Figure 5.4.

APT Attack Detection. The GNN are tasked with detecting stealthy APT scenarios

from the publicly available DARPA Transparent Computing (TC) Data Release (DARPA,

2019) and ProvNinja (Mukherjee et al., 2023). The DARPA dataset comprises fine-grained

event collection implemented across diverse OSes, providing a solid foundation for advanced

security research. We selected three of the most prevalent datasets commonly used in other

security papers (Zengy et al., 2022; Cheng et al., 2024; Rehman et al., 2024; Goyal et al.,

2024): FiveDirections, Trace, and Theia. The APTs were designed to attack a system

which consists of long-running processes and captured the stealthy attack vectors frequently

employed by advanced adversaries. However, these tasks were conducted in a simulated

environment and lasted for two weeks, involving a limited number of hosts. Therefore, we

also evaluated against the APT scenarios conducted by ProvNinja, which was composed

of hosts under realistic workloads.

Fileless Malware Detection. We target a family of stealthy malware samples based on

previous research (Barr-Smith et al., 2021) that impersonate well-known benign programs.

92

The Fileless malware uses the benign program binary to inject malicious payload into a pro-

cess, and can trivially evade conventional security solutions. But their behavior is captured

in system provenance graphs that are utilized by GNN based detectors to effectively detect

them. Following the guidelines of previous research (Küchler et al., 2021; Avllazagaj et al.,

2021) that warned about experimental bias and freshness, we carefully chose the sample to

ensure that they are representative of the malwares found in the wild and are active. We

chose noteworthy instances for case studies in §5.9.

Evaluation Metrics. In our evaluation of ProvExplainer, we focus on two critical as-

pects. The first is the agreement of the surrogate DTs with the GNN model, which we

measure using the weighted macro averaged (WMA) F1 score of the surrogate DT’s predic-

tions with respect to the GNN’s predictions. The agreement metric gauges the faithfulness

of the DT in replicating the conclusions of GNNs. The choice of the WMA F1 score accounts

for the data imbalance issue prevalent in the anomaly detection datasets.

To evaluate ProvExplainer’s and SOTA GNN explainers’ proficiency in identifying

security-relevant entities, we define precision and recall metrics with respect to documented

entities §2.7. A graph explanation method EM will yield a total ordering over V for a given

graphG = (V,E) and graph modelM . Let Vk be the top k nodes according to EM (G,M). Let

D be the set of documented entities. Precision is the proportion of explanation nodes that are

documented, and recall is the fraction of documented entities retrieved: precision(Vk, k,D) =
∣Vk∩D∣

k
, and recall(Vk, D) = ∣Vk∩D∣

∣D∣ .

5.8.2 Evaluation Tasks

APT Detection. We evaluated using two different datasets: the DARPA Transparent

Computing (TC) Data Releases (DARPA, 2019) and APT attack detection dataset from

ProvNinja (Mukherjee et al., 2023). This dataset, encompassing various OSes, provides

a comprehensive basis for advanced security research. The DARPA APTs were designed to

93

attack a system which consists of long-running processes and captured the stealthy attack

vectors frequently employed by advanced adversaries. We particularly focused on three

DARPA datasets used by previous studies (Zengy et al., 2022; Cheng et al., 2024; Rehman

et al., 2024; Goyal et al., 2024): FiveDirections, Trace, and Theia. However, these tasks

were conducted in a simulated environment and lasted for two weeks, involving a limited

number of hosts. Therefore, we also evaluated against the APT scenarios conducted during

ProvNinja (Mukherjee et al., 2023), which were performed with realistic benign background

workloads.

Fileless Malware Detection. For Fileless Malware detection, we targeted a family of

stealthy malware samples that impersonate benign programs, evading conventional security

solutions but are detectable by GNN-based provenance analysis. The malware samples were

chosen in accordance with guidelines from the literature (Küchler et al., 2021; Avllazagaj

et al., 2021) to minimize experimental bias and ensure freshness. The Fileless Malware

dataset includes various categories (Küchler et al., 2021), including banking Trojans, ran-

somware, spyware, and malware installers, with detailed statistics presented in Table 5.3 in

the appendix.

Program Classification. Our program classification task asks the GNN to distinguish

between operational modes of versatile system programs whose runtime behaviors influenced

by command line arguments. For example, we want to determine which python program is

running between certbot, update-apt-xapian-index, unattended-upgrade, decompyle3,

and cuckoo. We have similar datasets for powershell.exe and firefox.exe, which are

described in detail in the appendix in Table 5.2. Our data collection, approved by the

Institutional Review Board (IRB), involved system event data from volunteers’ Windows

and Linux hosts, totaling 14 TB over 13 months. This data encompassed a variety of user

workloads including students, researchers, developers, and administrators. The program

classification task provides a reference point for this study because the classes are balanced,

stabilizing the GNN’s decisions.

94

(a) certbot
(b)
update-apt-xapian-index

(c)
unattended-upgrade(d) decompyle3

(e) cuckoo(cuc,
2019)

(f)
unrestricted (g) allSigned (h) restricted (i) bypass (j) noLogo

(k)
noInputFormat

(l) moz log (m) osint (n) jsInit
(o)
win32LockedDown (p) file

Figure 5.4: Representative graphs of the different categories for python (linux),
powershell.exe and firefox.exe.

5.8.3 Evaluation Datasets

With the approval and oversight of our university’s Institutional Review Board (IRB), we so-

licited written informed consent from volunteers to participate in a long-running provenance

data collection project. Using Linux kernel audit(Redhat, 2017) and Windows ETW (Mi-

crosoft, 2015) event tracing framework, we collected system provenance data. Our volunteers

performed a variety of workloads as students, researchers, developers, and administrators.

In aggregate, our volunteers have helped us collect system event data from 9 Windows hosts

and 12 Linux hosts over 13 months, yielding 14TB of system event data.

95

Classification Programs. From Linux, we choose distinctive python, powershell.exe

and firefox.exe behavior for program classification as shown in Figure 5.4. Besides the

fact that all of these behaviors stem from the binary running different scripts at runtime,

these programs are one of the most versatile program. Programs such as python and

powershell.exe are two of the most popular scripting languages. Due to their conve-

nient syntax, widespread availability, and mature ecosystem, many malware authors favor

python and powershell.exe for prototyping malware and attack payloads. The developer

community has gradually adopted python for important tasks such as system utilities, lan-

guage decompilers, certification management, malware analysis, and etc. A detailed list of

different behaviors that we choose for the evaluation are listed in Table 5.2 and the dataset

statistics presented in Table 5.4.

DARPA APT Dataset. Each DARPA TC engagement is divided to multiple subsets, each

corresponding to the organization which collected the data. The THEIA subset was collected

on Ubuntu 12.04 using the BEEP framework, which partitions long-running programs to

reduce the effect of dependency explosion, resulting in a very granular dataset. TRACE was

collected on Ubuntu 14.04 and FiveDirections on Windows 10 hosts. The datasets consist of

various attacks (§5.9), e.g., exploiting firefox backdoor, exploiting malicious firefox extension,

phishing user credentials using attachment with malicious macro. The benign activity was

created by running custom scripts that simulate benign user activity. The benign behavior

does not extend beyond what is defined in the scripts, which leads to a low variety of

programs present. Detailed dataset statistics found in Table 5.3.

Fileless malware. The Fileless malware dataset used for detection task contained malware

from four major categories: banking Trojans, ransomware, spyware, and malware installer.

Blackmoon (Küchler et al., 2021) is a banking Trojan that steals banking credentials from

victim machines and spreads through spam and compromised download links. To camouflage

their interactions with .dlls and temporary files, Blackmoon masquerades as svchost.exe.

96

Ulise (Küchler et al., 2021) is spyware that is a multi-purpose Trojan that can establish

remote access connections, capture keyboard input, collect system information, download-

/upload files, drop other malware into the infected system, and perform encryption. Because

it propagates through the network sockets and interacts with many system files, it masquer-

ades as python.exe as it needs a target that exhibits diverse behavioral pattern. These

Trojans also masqueraded as explorer.exe, wmic.exe, reg.exe, sc.exe. Detailed dataset

statistics found in Table 5.3.

APT Dataset from (Mukherjee et al., 2023). Two different APT attacks were described

in the recent literature (Mukherjee et al., 2023), Enterprise APT and Supply-Chain APT.

In the Enterprise scenario, the adversary sends a phishing email for the initial penetration

to take over the network-wide domain controller. Eventually, the attacker launches a large-

scale database leakage attack. In the Supply-Chain scenario, the attacker gains initial access

by committing seemingly benign patches to a public repository, which are later pulled by

the victim and included in an organization’s Docker image. The attacker then performs

arbitrary read and write from the docker container instances to exfiltrate the organization’s

data. Interested readers can refer to (Mukherjee et al., 2023) for more details and Table 5.3

for dataset statistics.

5.8.4 Dataset Statistics

Anomaly Detection Dataset. The dataset statistics for the anomaly detection dataset

is seen in Table 5.3. The Fileless Malware samples were downloaded from (VirusTotal,

2021) and selected from recent studies, (Grammatikakis et al., 2021; Küchler et al., 2021;

Avllazagaj et al., 2021; Barr-Smith et al., 2021). The benign provenance graphs for the

anomaly detection dataset were sourced from the DARPA dataset, which contained 5,695

benign graphs with an average of 669.81 vertices and 982.18 edges (Table 5.3); the Fileless

Malware dataset, which contained 19,422 benign graphs with an average of 60.44 vertices and

97

Table 5.2: Datasets used for classification: python(linux), powershell.exe and,
firefox.exe.

Program Categories Description

Linux

python

cerbot Program is a ssl certificate management/update utility program.

update-apt-xapian-index
System programs that rebuild the indexes index to sorts of extra information, such as Debtags tags,
and package ratings.

unattended-upgrade System program that updates the linux distribution without user interface

decompyle3
Custom python decompilation program that recovers the source code of python programs from their
compiled bytecode instructions.

cuckoo Sandbox utility that lets the user run programs inside a sandbox and capture the system level interactions.

Windows

powershell.exe

unrestricted Executes a unrestricted hidden script to disable unused SMBv1 protocol features.
allSigned Sets output encoding to UTF-8 and starts opening a file stream for only signed scripts.
restricted Executes a simple display command under a restricted policy, allowing no scripts.
bypass Bypasses the execution policy in PowerShell.
noLogo Runs PowerShell bypassing the execution policy, without the PowerShell logo, user profile, and interactively.
noInputFormat Runs PowerShell in a non-interactive mode, with input format set to none and output format set to text.

firefox.exe

moz log Enables detailed logging and runs a background tasks (e.g., updates).
osint Opens a specific URL, invoked by an external application (e.g., discord).
jsInit Starts a internal content rendering process with detailed parameters for communication and preferences.
win32LockedDown Initializes a secured sandbox environment for content in Firefox with specific build details.
file Opens a local HTML or PDF file.

Table 5.3: APT and Fileless Malware graph statistics.

Applications
of Benign

Graphs
of Anomaly

Graphs
Avg # of Benign
Nodes / Edges

Avg # of Anomaly
Nodes / Edges

DARPA APT Dataset (DARPA, 2019)

Trace 1883 8 735.35 / 957.56 836.15 / 946.75
Theia 2858 9 559.47 / 979.59 913.91 / 987.31
FiveDirections 954 13 906.22 / 971.91 959.43 / 973.63

Average 1898.33 10.00 669.81 / 982.18 777.08 / 1011.19

APT Dataset from (Mukherjee et al., 2023)

Enterprise 3079 1836 90.22 / 85.13 73.73 / 76.88
Supply-Chain 3212 1092 65.02 / 40.77 61.09 / 54.33

Average 3145.50 1464.00 55.94 / 83.29 58.38 / 51.69

Fileless Malware from (Barr-Smith et al., 2021)

explorer.exe 399 40 66.18 / 59.94 44.10 / 56.45
wmic.exe 876 11 88.56 / 81.58 87.36 / 101.54
reg.exe 309 116 60.18 / 52.93 78.91 / 131.87
sc.exe 621 7 44.08 / 37.49 38.42 / 52.28
python.exe 15585 426 89.95 / 83.15 57.98 / 79.33
svchost.exe 1632 443 52.42 / 46.42 51.97 / 81.31

Average 2667.00 90.84 60.44 / 54.15 63.72 / 89.93

54.15 edges; and the APT dataset, which contained 6,291 benign graphs with an average of

55.94 vertices and 83.29 edges. The corresponding anomaly graphs are sourced from the same

datasets: The DARPA dataset contained 30 anomalous graphs with an average of 777.08

98

Table 5.4: Classification dataset graph statistics.

Program Categories Avg Nodes / Edges Graphs

Linux

python

certbot 74.85/ 149.94 4955
update-apt-xapian-index 169.78/ 302.37 4922
unattended-upgrade 742.24/ 312.56 4966
decompyle3 90.67/ 169.61 5010
cuckoo 305.26/ 403.99 5072

Average 190.62 / 353.63 24925.00

Windows

powershell.exe

unrestricted 71.20 / 172.10 2704
allsigned 815.50 / 917.10 1123
restricted 100.00 / 129.60 1002
bypass 639.40 / 713.40 1074
noLogo 691.40 / 743.70 780
noIputFormat 195.00 /283.70 614

firefox.exe

moz log 249.80 / 340.40 918
osint 95.50 / 115.60 323
jsInit 144.50 / 183.10 14051
win32LockedDown 102.30 / 124.20 741
file 143.80 / 222.80 91

Average 295.31 / 358.70 11710.50

vertices and 1011.19 edges (Table 5.3); the Fileless Malware contained 1,043 anomalous

graphs with an average of 63.72 vertices and 89.93 edges; and the APT dataset contained

2,928 anomalous graphs with an average of 58.38 vertices and 51.69 edges.

Classification Dataset. For program classification, we chose python from the Linux en-

vironment and powershell.exe and firefox.exe from the Windows environment for our

classification evaluation. Python and powershell.exe are language interpreters with flexi-

ble behaviors. In the DARPA datasets, attackers leveraged firefox.exe in many scenarios

to gain initial access. Therefore, we wanted to investigate how does firefox.exe behave

under different benign workloads. The provenance graphs from Linux environment con-

tained 190.62 vertices, 353.63 edges and 24925 graphs and Windows environment contained

295.31 vertices, 358.70 edges and 11710 graphs, on average (Table 5.4). From the program

description in Table 5.2 it is clear that each type of program has distinctive behavior.

99

We chose five different classes of python programs as shown in Table 5.2. certbot is a ssl

certificate management utility program, apt-xapian-index and unattended-upgrade are

system programs that rebuild the indexes and updates the linux distribution without user

interface, respectively. cuckoo (cuc, 2019) is a sandbox utility that runs programs inside

a sandbox and capture the system level interactions. certbot and cuckoo will have sev-

eral outgoing network connections, but certbot’s outbound network connection will have

higher number of connection to external IPs as compared to cuckoos. apt-xapian-index

and unattended-upgrade, even though they are system utilities, behave differently in the

sense that unattended-upgrade reads from many shared files such as .lock files and

writes to specific .log files, but apt-xapian-index reads a lot of shared .so and .db files;

apt-xapian-index also creates children who read from the same file .db files, so there is

information transfer.

Powershell.exe classes include four different kinds of execution policy, unrestricted,

allsigned, restricted, bypass, and two kinds of configuration noLogo, and noInputformat.

The class unrestricted permits the execution of all PowerShell scripts, including those

downloaded from the internet i.e., for application updates. The allsigned class enhances

security by requiring that all scripts and configuration files be signed by a trusted publisher

before execution. The default policy, restricted, offers a high level of security by pre-

venting the execution of any scripts. In contrast, bypass allows scripts to run without any

restrictions, which is commonly employed for troubleshooting purposes. The noLogo class

is used to start PowerShell without displaying the logo and to disable prompts, scripts, and

interactive input, making it suitable for automation tasks. Finally, noInputformat spec-

ifies that PowerShell no input is expected, a mode to execute scripts in a non-interactive

environment without any external input.

The classes for firefox.exe encompass: moz_log, osint, jsInit, win32kLockedDown,

and file. These classes reflect various Firefox execution modes and debugging options. The

100

Table 5.5: Surrogate DTs have high agreement with the decisions of GNN measured using
the WMA F1 score. Grey cells low agreement with the GNN (discussed in §5.8.5).

Dataset GAT
ProvDT

(agree w/ GAT)
GraphSAGE

ProvDT
(agree w/ GraphSAGE)

APT Dataset from (Mukherjee et al., 2023)

Enterprise 0.97 0.93 0.94 0.92
Supply-Chain 0.87 0.90 0.84 0.91

Average 0.91 0.92 0.89 0.92

DARPA APT Dataset (DARPA, 2019)

FiveDirections 0.72 0.88 0.69 0.87
Trace 0.67 0.90 0.65 0.92
Theia 0.69 0.90 0.59 0.90

Average 0.69 0.89 0.64 0.90

Fileless Malware from (Barr-Smith et al., 2021)

explorer.exe 0.99 0.79 0.95 0.67
wmic.exe 0.89 0.66 0.87 0.89
reg.exe 0.94 0.96 0.90 0.93
sc.exe 0.99 0.99 0.93 0.63
python.exe 0.97 0.79 0.95 0.75
svchost.exe 0.99 0.84 0.99 0.81

Average 0.96 0.83 0.88 0.83

Program Classification

python 0.90 0.85 0.77 0.71
powershell.exe 0.92 0.97 0.87 0.97
firefox.exe 0.83 0.80 0.65 0.70

Average 0.88 0.87 0.76 0.79

moz_log class is used to enable detailed logging in Firefox. The osint class indicates that

Firefox is being launched for an external URL or file, typically seen in scenarios where the

browser is invoked by other applications or operating system components (e.g., discord.exe

or slack.exe). The jsInit is a technical flag related to JavaScript engine initialization for

internal debugging. The win32kLockedDown class is associated with security features, where

Firefox operates with restricted access to certain system calls, typically used to mitigate

risks of kernel vulnerabilities. The file class captures the direct opening of local files.

5.8.5 Graph Structural Feature Evaluation

To answer RQ1, Table 5.5 demonstrates the effectiveness of surrogate DTs in mirroring the

decision process of GNN models like GAT and GraphSAGE. Agreement between the sur-

101

rogate DT and the GNN is an important metric for two reasons: (1) surrogate explanations

are only valid when the surrogate agrees with the GNN, and (2) high agreement indicates

that the surrogate model is a good approximation of the GNN’s decision-making process.

The APT datasets exhibit high agreement (> 87%) with the GNN models, but the File-

less Malware and classification datasets only showed moderate agreement (> 79%). The

graph structural features were designed with APT structures in mind, and are optimized

to capture malicious behavior. The surrogate DTs’ superior performance in APT datasets

can be attributed to ProvExplainer’s optimized graph shapes that effectively capture

the behaviors of the APT stages. Focusing on the python and firefox.exe classification

datasets, where GraphSAGE performed relatively poorly, the surrogate DTs were unable

to closely approximate the GraphSAGE model using the graph structural features. For ex-

ample, firefox.exe creates Jellyfish shapes both when users browse for content and when

system programs use it to download updates, since in both instances firefox.exe creates a

child that reads the same system files (e.g., System32). The ablation study, Table 5.6 shows

that the Jellyfish shape performs the worst for firefox.exe.

In the Fileless Malware datasets, two distinct scenarios emerge. First, in explorer.exe

and python.exe, the surrogate DTs show poor agreement with both the GAT and Graph-

SAGE models. These datasets are dominated by malware using stealthy techniques such

as living-off-the-land, which involve memory object interactions which are currently not

captured in our provenance graphs. The absence of the distinguishing features impairs the

effectiveness of ProvExplainer. Secondly, there are cases where the surrogate DT’s agree-

ment is poor with only GAT (wmic.exe) or only GraphSAGE (sc.exe). This variation

arises because ProvExplainer’s data augmentation methods aim to enhance stability at

the expense of agreement. Consequently, in datasets with very few anomalous examples,

like those of wmic.exe and sc.exe (Table 5.3), the surrogate DTs’ performance becomes

unstable which is an inherent limitation of the surrogate model approach (Jacobs et al.,

2022).

102

Table 5.6: Agreement of surrogate DTs with the GAT model across different feature subsets.
The best feature subsets are highlighted.

Dataset
Number of

nodes and edges

Security Domain Features §5.4
All Security

Domain Features
Triangles

Squares and
Kites

Exploding
Shapes

Cascade and
Jellyfish

Internal vs
External IPs

DARPA APT Dataset (DARPA, 2019)

FiveDirections 0.58 (-0.30) 0.51 (-0.37) 0.85 (-0.03) 0.85 (-0.03) 0.84 (-0.04) 0.79 (-0.09) 0.88
Trace 0.61 (-0.29) 0.60 (-0.30) 0.84 (-0.06) 0.84 (-0.06) 0.88 (-0.02) 0.79 (-0.11) 0.90
Theia 0.68 (-0.22) 0.75 (-0.15) 0.86 (-0.04) 0.84 (-0.06) 0.88 (-0.02) 0.82 (-0.08) 0.90

Average 0.62 (-0.27) 0.62 (-0.27) 0.85 (-0.04) 0.84 (-0.05) 0.87 (-0.03) 0.80 (-0.09) 0.89

APT Dataset from (Mukherjee et al., 2023)

Enterprise 0.72 (-0.21) 0.78 (-0.15) 0.83 (-0.10) 0.91 (-0.02) 0.66 (-0.27) 0.88 (-0.05) 0.93
Supply-Chain 0.75 (-0.15) 0.70 (-0.20) 0.87 (-0.03) 0.83 (-0.07) 0.63 (-0.27) 0.67 (-0.23) 0.90

Average 0.73 (-0.18) 0.74 (-0.18) 0.85 (-0.07) 0.87 (-0.05) 0.65 (-0.27) 0.78 (-0.14) 0.92

Fileless Malware from (Barr-Smith et al., 2021)

explorer.exe 0.57 (-0.22) 0.76 (-0.03) 0.77 (-0.02) 0.77 (-0.02) 0.46 (-0.33) 0.69 (-0.10) 0.79
wmic.exe 0.49 (-0.17) 0.51 (-0.15) 0.55 (-0.11) 0.57 (-0.09) 0.62 (-0.04) 0.55 (-0.11) 0.66
reg.exe 0.87 (-0.09) 0.88 (-0.08) 0.91 (-0.05) 0.85 (-0.11) 0.88 (-0.08) 0.92 (-0.04) 0.96
sc.exe 0.49 (-0.50) 0.80 (-0.19) 0.97 (-0.02) 0.94 (-0.05) 0.80 (-0.19) 0.84 (-0.15) 0.99
python.exe 0.71 (-0.08) 0.78 (-0.01) 0.79 (0.00) 0.77 (-0.02) 0.74 (-0.05) 0.76 (-0.03) 0.79
svchost.exe 0.74 (-0.10) 0.84 (0.00) 0.83 (-0.01) 0.83 (-0.01) 0.82 (-0.02) 0.81 (-0.03) 0.84

Average 0.65 (-0.19) 0.76 (-0.08) 0.80 (-0.04) 0.79 (-0.05) 0.72 (-0.12) 0.76 (-0.08) 0.84

Program Classification

python 0.53 (-0.32) 0.77 (-0.08) 0.83 (-0.02) 0.75 (-0.10) 0.79 (-0.06) 0.82 (-0.03) 0.85
powershell.exe 0.63 (-0.34) 0.81 (-0.16) 0.75 (-0.22) 0.82 (-0.15) 0.65 (-0.32) 0.95 (-0.02) 0.97
firefox.exe 0.35 (-0.45) 0.38 (-0.42) 0.41 (-0.39) 0.44 (-0.36) 0.46 (-0.34) 0.61 (-0.19) 0.80

Average 0.53 (-0.34) 0.77 (-0.10) 0.83 (-0.04) 0.79 (-0.08) 0.82 (-0.05) 0.75 (-0.12) 0.87

ProvExplainer’s graph structural features enable surrogate DTs to approximate GNN

models’ decision-making process on in-distribution data. Although the features are sensitive

to the data distribution, additional features can be extracted to extend support to new

distributions.

5.8.6 Ablation Study

Table 5.6 shows the contributions of each structural feature to the overall agreement of

surrogate DTs approximating a GAT model. We take the number of nodes and edges in the

graph as a simple baseline, which obtains an average F1 score of 0.63 across our datasets,

demonstrating that graph size alone is insufficient. Attack subgraphs typically represent

103

Table 5.7: WMA F1 of surrogate DTs approximating a GraphSAGE model across different
feature subsets. The best feature subsets are bolded.

Dataset
Number of

nodes and edges

Security Domain Features §5.4
All Security

Domain Features
Triangles

Squares and
Kites

Exploding
Shapes

Cascade and
Jellyfish

Internal vs
External IPs

DARPA APT Dataset (DARPA, 2019)

FiveDirections 0.58 (-0.32) 0.74 (-0.16) 0.88 (-0.02) 0.88 (-0.02) 0.71 (-0.19) 0.75 (-0.15) 0.90
Trace 0.61 (-0.31) 0.73 (-0.19) 0.81 (-0.11) 0.86 (-0.06) 0.86 (-0.06) 0.81 (-0.11) 0.92
Theia 0.58 (-0.32) 0.79 (-0.11) 0.81 (-0.09) 0.87 (-0.03) 0.84 (-0.06) 0.82 (-0.08) 0.90

Average 0.59 (-0.32) 0.75 (-0.15) 0.83 (-0.07) 0.87 (-0.04) 0.80 (-0.10) 0.79 (-0.11) 0.91

APT Dataset from (Mukherjee et al., 2023)

Enterprise 0.72 (-0.18) 0.78 (-0.12) 0.70 (-0.20) 0.63 (-0.27) 0.63 (-0.27) 0.67 (-0.23) 0.90
Supply-Chain 0.75 (-0.16) 0.76 (-0.15) 0.87 (-0.04) 0.87 (-0.04) 0.84 (-0.07) 0.87 (-0.04) 0.91

Average 0.73 (-0.17) 0.77 (-0.14) 0.78 (-0.12) 0.75 (-0.16) 0.73 (-0.17) 0.77 (-0.14) 0.91

Fileless Malware from (Barr-Smith et al., 2021)

explorer.exe 0.57 (-0.10) 0.66 (-0.01) 0.67 (0.00) 0.65 (-0.02) 0.63 (-0.04) 0.54 (-0.13) 0.67
wmic.exe 0.49 (-0.40) 0.85 (-0.04) 0.88 (-0.01) 0.81 (-0.08) 0.82 (-0.07) 0.87 (-0.02) 0.89
reg.exe 0.87 (-0.06) 0.37 (-0.56) 0.93 (0.00) 0.88 (-0.05) 0.92 (-0.01) 0.49 (-0.44) 0.93
sc.exe 0.49 (-0.44) 0.84 (-0.09) 0.91 (-0.02) 0.87 (-0.06) 0.91 (-0.02) 0.83 (-0.10) 0.93
python.exe 0.71 (-0.04) 0.68 (-0.07) 0.74 (-0.01) 0.74 (-0.01) 0.72 (-0.03) 0.67 (-0.08) 0.75
svchost.exe 0.74 (-0.07) 0.81 (0.00) 0.75 (-0.06) 0.78 (-0.03) 0.75 (-0.06) 0.78 (-0.03) 0.81

Average 0.65 (-0.19) 0.70 (-0.13) 0.81 (-0.02) 0.79 (-0.04) 0.79 (-0.04) 0.70 (-0.13) 0.83

Program Classification

python 0.53 (-0.18) 0.61 (-0.10) 0.69 (-0.02) 0.65 (-0.06) 0.70 (-0.01) 0.67 (-0.04) 0.71
powershell.exe 0.63 (-0.34) 0.84 (-0.13) 0.74 (-0.23) 0.82 (-0.15) 0.69 (-0.28) 0.91 (-0.06) 0.97
firefox.exe 0.37 (-0.33) 0.41 (-0.29) 0.45 (-0.25) 0.51 (-0.19) 0.41 (-0.29) 0.64 (-0.06) 0.70

Average 0.53 (-0.18) 0.61 (-0.10) 0.69 (-0.02) 0.65 (-0.06) 0.70 (-0.01) 0.67 (-0.04) 0.71

a small portion of an overall provenance graph, so the graph size is an unreliable way to

determine if an attack is present in the graph.

Security Domain Features.

Triangles are tight parent-child process interactions, which are crucial in Fileless malware

scenarios where a malware is creating the initial infection by dropping and cloning its payload

to create multiple copies of itself. However, their simplicity also results in their prevalence in

benign programs. In the DARPA datasets, long-running processes created similar amounts

of triangles as the attacks. Therefore, it was difficult to reliably differentiate attacks from

benign behavior, resulting in agreement with the GAT model being as low as 0.51. Some

attacks, such as the svchost.exe Fileless malware samples, were frequently identifiable

with triangles alone, since the benign program did not create triangles. Empirically, we have

104

seen triangles are commonly a supporting feature that works alongside the more complex

structures (e.g., Exploding Square and Jellyfish).

Squares and Kites form a reliable backbone for explaining anomaly detection and pro-

gram classification decisions made by the GAT model. Boasting both the highest overall

average agreement and top individual performances in the program classification and File-

less Malware detection tasks, squares and kites identify clusters of programs with shared

dependencies. The Kite pattern is particularly effective at capturing malware replication

and deployment because it contains a Dropper Triangle as a subgraph, but with the added

requirement that the parent and child process share a dependency.

Exploding shapes are specializations of the Square and Kite patterns that include mul-

tiple file read operations by the child malware, and are therefore particularly effective at

explaining the GAT ’s predictions in the APT dataset from (Mukherjee et al., 2023). These

exploding variants are created after the initial deployment, when the final payload is success-

fully executed. Consequently, the exploding shapes underperformed in the benign program

classification task as these are usually seen in equal quantity in the benign context. It is

noteworthy that exploding shapes perform very similarly to squares and kites.

Cascade and Jellyfish are used for identifying complex, multi-stage attacks. The archetyp-

ical Cascade pattern is a sequence of malware payloads with a central process monitoring its

progress. The Jellyfish pattern simply identifies parent-child processes with many shared de-

pendencies, which is common in parallel processing. These patterns are specialized towards

process inheriting and staging behavioral scenarios, resulting in their excellent explanative

power on the DARPA dataset, but showing high variability in their effectiveness for Fileless

malware samples. This is because these shapes are prevalent in benign service applications

(e.g., sc.exe and explorer.exe) since they are specialized for parallel processing and com-

prised of multiple child processes that attend to a service request. Therefore, this shape is

prevalent in both benign and anomaly samples, resulting in a significant drop in explanative

power compared to using the full feature list.

105

Internal and external network connections shows varying agreement depending on the

attack scenario. For instance, in APT, network connections alone are not reliable indicators,

as attackers often disguise their activities as legitimate programs that also establish net-

work connections. However, attacks using programs that rarely make network connections,

e.g., reg.exe or sc.exe, become easily identifiable.

All security domain features utilizing the full range of features generally results in the

best overall performance. However, there are cases where a subset of features can perform

almost as effectively as the complete set. This is evident in the case of svchost.exe, where

the use of triangles alone achieves an agreement of 0.84, equal to that obtained with all

features. This indicates the possibility of optimized feature selection in certain scenarios.

Nevertheless, such optimization requires knowledge of the specific attack.

Ablation Study: GraphSAGE The ablation study utilizing the GraphSAGE network

revealed patterns consistent with those observed in the GAT network study (§5.8.6), par-

ticularly regarding the impact of certain shape groups on ProvExplainer. Notably, the

Square and Kite shapes were distinctively influential for datasets like Fileless Malware. These

shapes effectively encapsulate malware replication and deployment processes. Additionally,

the Square and Kite shapes demonstrated notable performance in the APT dataset from

(Mukherjee et al., 2023). This effectiveness is attributed to their ability to capture shared

dependencies, a vital element in the initial access and establishing a foothold stages of an

attacker’s APT campaign—a finding consistent with their performance in the GAT network

analysis.

In the context of the DARPA APT dataset, the exploding shapes assumed significant

importance. This dataset, characterized by numerous long-range dependencies associated

with malware, finds an effective representation through the exploding shapes. These shapes

are particularly adept at capturing scenarios that represent the later stages of an APT

campaign, such as deepen access and lateral movement. These stages are typically marked

106

0.10

0.20

0.30

Pr
ec

is
io

n
DARPA Dataset

 (Detection)

0.00

0.05

0.10

0.15

APT Dataset from [41]
 (Detection)

0.10

0.20

0.30

Fileless Malware
 (Detection)

0.10

0.20

0.30

Classification

20 40
Explanation Size (Nodes)

0.10

0.15

0.20

R
ec

al
l

20 40
Explanation Size (Nodes)

0.05

0.10

0.15

0.20

20 40
Explanation Size (Nodes)

0.02

0.04

0.06

0.08

20 40
Explanation Size (Nodes)

0.10

0.20

0.30

0.40

0.50

Precision and Recall of Different Graph Neural Network Explainers

Explainers
ProvExplainer
ProvExplainer+
GNNExplainer
ProvExplainer+
PGExplainer
ProvExplainer+
SubgraphX
GNNExplainer
PGExplainer
SubgraphX

Figure 5.5: Effectiveness of graph model explainers at identifying documented entities
(§5.8.1), measured using precision and recall.

by malware activities involving reading several system dependencies or probing system files

so that the malware can replicate and spread.

5.8.7 ProvExplainer vs. SOTA Explainers

To answer RQ2 and RQ3, Figure 5.5 compares the precision and recall of explanations

derived from SOTA methods (GNNExplainer, PGExplainer, and SubgraphX) with those

derived from ProvExplainer. Generally, as we request more nodes from the explanation

techniques, the precision trends downwards and the recall trends upwards. ProvExplainer

surpasses all existing SOTA explainers across datasets, barring the APT dataset mentioned

in (Mukherjee et al., 2023) for explanations exceeding 40 nodes. This exception arises due to

ProvExplainer’s capture of systemic noise for large window sizes, which impacts precision.

Nonetheless, for the APT dataset in (Mukherjee et al., 2023), ProvExplainer excels in

generating concise explanations below 40 nodes, aligning with the preferences of security

researchers for brief yet comprehensive analyses. Later, we will analyze specific case studies

in §5.9.

107

In the DARPA and APT datasets, the security-aware features of ProvExplainer pro-

vide a clear advantage in extracting security-relevant nodes from the provenance graphs.

In the APT dataset, we notice a limitation of ProvExplainer, where it can only offer

nodes that participate in the defined shapes for the explanation, which can lead to plateaus

when there are security-relevant nodes that do not participate in any of the shapes. In the

Fileless malware dataset, where the usage of memory objects disrupts several structural pat-

terns, ProvExplainer still provides the best explanations with respect to the documented

entities.

Our experimentation showcased an interesting trend among the SOTA explainers: no

one SOTA explainer consistently outperformed the rest. GNNExplainer tries to identify

substructures that provide maximum mutual information, while PGExplainer generates a

probabilistic global model to explain the predictions. The differences in explanation per-

formance across datasets gives insight regarding the data composition depending on if it is

easier to create global explanations or local explanations. For the DARPA datasets it is

hard to create generalized explanations since the DARPA dataset consists of different APT

scenarios that are executed using different payloads and attack tactics. But for the APT

dataset from (Mukherjee et al., 2023), which consists of only two different APT scenarios,

it is easier to create global explanations, favoring PGExplainer.

More interesting trends emerge when we combine explanations (§5.7). Selecting nodes

for the explanation according to both ProvExplainer and a general-purpose explainer

achieves best or near-best performance with respect to the documented entities across all

of our datasets. Particularly in the program classification and Fileless malware detection

datasets, even when there is a large gap between two general-purpose explainers, combining

them with ProvExplainer improves and stabilizes the performance. As we will further

explore in our case studies (§5.9), the different explanation techniques prioritize different

aspects of program behavior, causing the composite explanations to be more complete and

stable than individual explanations.

108

0.10

0.20

0.30

Pr
ec

is
io

n
DARPA Dataset

 (Detection)

0.05

0.10

0.15

APT Dataset from [41]
 (Detection)

0.10

0.20

0.30

Fileless Malware
 (Detection)

0.10

0.20

0.30

Classification

20 40
Explanation Size (Nodes)

0.05

0.10

0.15

0.20

R
ec

al
l

20 40
Explanation Size (Nodes)

0.10

0.15

0.20

20 40
Explanation Size (Nodes)

0.02

0.04

0.06

0.08

20 40
Explanation Size (Nodes)

0.20

0.30

0.40

0.50

Precision and Recall of Different Graph Neural Network Explainers

Explainers
ProvExplainer
ProvExplainer+
GNNExplainer
ProvExplainer+
PGExplainer
ProvExplainer+
SubgraphX
GNNExplainer
PGExplainer
SubgraphX

Figure 5.6: Effectiveness of graph model explainers at identifying documented entities
(§5.8.1), measured using precision and recall as more nodes are included in the explanation.
ProvExplainer outperforms SOTA explainers on anomaly detection tasks and remains
competitive in classification tasks.

ProvExplainer vs. SOTA Explainers: GraphSAGE

As mentioned previously §5.8.1, we use precision and recall to compare the explanation

quality of ProvExplainer and SOTA GNN explainer (GNNExplainer, PGExplainer, and

SubgraphX). Similar to GAT based results, ProvExplainer deliver the best performance

across the datasets. The complexity (i.e., size and resource interaction) of the provenance

graphs play a major role in determining which explainers would be effective for a particu-

lar dataset. For smaller provenance graphs like APT graphs from (Mukherjee et al., 2023)

PGExplainer performs the second best but for DARPA APT graphs which are known to be

complex or noisy GNNExplainer performs the second best. Fileless Malware dataset’s mal-

ware graph composure is different as compared to APT attacks due to the attack campaigns.

So, SubgraphX performed better than both GNNExplainer and PGExplainer. SubgraphX

showed its specialization in identifying the distinctive malicious subgraphs which when re-

moved changes the model prediction. However, this specialization also lead to limitations in

109

other scenarios, particularly where the malware is making succinct changes in the system to

avoid detection, e.g., APT scenarios.

An interesting trend is that while ProvExplainer performed the best in both the

DARPA and APT datasets, the second-best explainer for DARPA is GNNExplainer, while

for the APT dataset it is PGExplainer. GNNExplainer tries to identify potentially disjoint

substructures that maximize mutual information, but PGExplainer generates a probabilis-

tic global model to explain the predictions. This interesting trend showcases that while

GNNExplainer is more suitable when the focus is on understanding specific decisions made

by the GNN, and PGExplainer is better suited for scenarios where a global explanation

across the dataset is necessary. Since, the two explainers perform at different capacity for

the datasets, it gives insight regarding the composition of the dataset i.e., is it easier to

create global explanations that are consistent throughout the dataset or is it more apt to

create local explanations. For the DARPA datasets it is hard to create generalized explana-

tions since the DARPA dataset consists of different APT scenario that are executed using

different payload and attack tactics. But, for the APT dataset which majorly consists of

only two different APT scenarios (e.g., Enterprise and Supply-Chain APT), it is easier to

create global explanations, so PGExplainer was able to create global explanations that are

consistent across datasets.

5.9 Case Studies

To demonstrate ProvExplainer in a realistic setting, we analyze three case studies from

the DARPA (DARPA, 2019) datasets. In each study, we use an explanation size of 40

nodes and refer to the GAT model. We list the most important features from the surrogate

DT and qualitatively analyze the explanations from ProvExplainer and the SOTA GNN

explainers. Detailed system-level analyses can be found in the appendix (§5.9).

110

5.9.1 FiveDirections: Browser Extension

(a) Malicious patterns identified by ProvEx-
plainer. (b) GNN explainations comparison.

Figure 5.7: FiveDirections: the attacker exploits the target via a malicious Firefox exten-
sion.

Description. An attacker targets the Firefox browser using a malicious extension to deploy

the drakon malware. The attacker writes drakon directly to disk and exploits a compromised

browser extension masquerading as a password manager to execute malicious powershell

code, gaining deeper access and control over the system, as illustrated in Figure 5.7a.

Features: Exploding Square and Jellyfish.

System Interpretation. This attack graph contains the Jellyfish and Exploding Square

patterns, which are often observed in the APT stages of deepen access (ATT&CK®, 2020)

and lateral movement (ATT&CK®, 2018c). The Jellyfish pattern captures the dependency

correlation among malware processes, where multiple instances of drakon exploit Firefox

vulnerabilities via a malicious extension to spread to different parts of the system. This

pattern is emblematic of malware processes cloning themselves to persist in the system as

111

well as maintain operational integrity. Further, the Exploding Square highlights how malware

processes move laterally to successfully exfiltrate sensitive data and read configuration files.

System Connection. In the context of the described attack, where the drakon malware

exploits the firefox.exe browser through a rogue extension (pass mgr) the Jellyfish shape

is created. Multiple instances of the malware process are created, each reading from the

malicious files: pass mgr.exe and passwordfile.dat. Additionally, they access essential

dictionary files (en-US.aff) and cryptographic libraries (bcryptprimitives.dll) to main-

tain operational consistency, allowing them to conduct their malicious activities efficiently.

The Exploding Square shape captures the data extraction behavior through sensitive file

accesses. These malware access sensitive information and system configuration files like

WindowsShell.Manifest, shell32.dll, cryptbase.dll, and wintrust.dll, along with

initial malware files (addons, tzres.dll, userenv.dll).

GNNExplainer effectively identifies the malware template file present in C:\ProgramFiles\

MozillaFirefox\add-on\pass_mgr.exe and the initial malware pass mgr.exe. PGEx-

plainer recognized the structures common across all attack graphs, particularly identify-

ing file access of system libraries needed for malware operation C:*\System32\driver,

C:*\Windows\SysWOW64 and C:*\AppData\Local\Temp. SubgraphX performed at the

same capacity as PGExplainer as it identified a different the structure of malware executing

its payload from C:*\Desktop*\add-on, reading sensitive files from C:*\ProgramFiles\

MozillaFirefox*, and extracting them through C:*\admin\AppData*. This is partly

due to its foundation on Monte Carlo Tree Search (MCTS), incorporating nondeterministic

exploitation and exploration stages. In the absence of attribute information in the GNN, the

exploitation stage lacks guidance. But, when SubgraphX correctly identifies a substructure

for exploitation, the exploration stage of MCTS proves effective.

ProvExplainer vs. SOTA explainers. Figure 5.7b compares the explanations of Prov-

Explainer and those of SOTA GNN explainers, focusing on their efficacy in identifying

112

security-aware elements. ProvExplainer excels by highlighting the malware replicating

itself from template files and accessing sensitive system files. ProvExplainer isolates

security-relevant structures in the graph, significantly increasing the end-user trust in the

detection.

GNNExplainer identifies the malware template file and the malicious extension. This ef-

fectiveness stems from GNNExplainer’s method of searching for important edges. When this

GNNExplainer isolates the pivot structure, the graph becomes disjoint, leading to a change

in prediction. This results in a high information gain, the core metric for GNNExplainer.

On the other hand, PGExplainer and SubgraphX reveal commonalities across attack graphs,

such as the identification of key system library accesses required for malware operation. Sub-

graphX’s effectiveness varies due to its Monte Carlo Tree Search (MCTS), suggesting benefits

to incorporating domain-specific insights into SubgraphX’s scoring function.

5.9.2 FiveDirections: Copykatz

Description. In a sophisticated attack, a hijacked version of usdoj.gov exploits Firefox to

deploy drakon malware to the victim host. Then, drakon uses the elevate driver to escalate

privileges and masquerade as the runtimebroker system program. Finally, the malicious

runtimebroker instance connects to a command and control (C2) server to download and

execute Copykatz (an older version of Mimikatz) to harvest and exfiltrate host credentials.

Features: Dropper Triangle and Kite.

System Interpretation. The attack graph shown in Figure 5.8a highlights two key pat-

terns: the Dropper Triangle and the Kite. The Dropper Triangle captures the initial access

by highlighting the creation of malicious dynamic-link libraries. This stage enables the

Windows Application Programming Interface and cryptographic operations necessary for

the malware’s functionality. Following this, the malware disguises itself as Firefox, and

executes the Copykatz payload.

113

usdoj.gov

(a) Malicious patterns identified by ProvEx-
plainer. (b) GNN explainations comparison.

Figure 5.8: FiveDirections: the attacker gains C2 connections and installs Copykatz through
a Firefox exploit.

The malicious Firefox instance then distributes its payload through temporary files,

setting the stage for a subsequent malicious Firefox instance to trigger a flood of process

creations. This chain of actions, marked by inherited functionalities from Copykatz, forms

the Kite pattern. The replication of this malware leverages the same essential system li-

braries, indicating a meticulous design to maintain operational consistency throughout the

malicious process chain.

System Connection. The Dropper Triangle starts its kill chain stage of initial accessc

(ATT&CK®, 2018b) by reading shared dynamic-link libraries (DLLs); notable mentions are

ntdll.dll and bcryptprimitives.dll. It then writes and executes a malware masquerad-

ing as firefox.exe which contains the Mimikatz and Copykatz modules. ntdll.dll (ntd,

2018) includes multiple kernel-mode functions which enables the “Windows Application

Programming Interface (API)” and bcryptprimitives.dll (bcr, 2018) contain functions

114

implementing cryptographic primitives, which are essential for Mimikatz (mim, 2018) and

Copykatz to function.

The firefox.exe malware write its payload into temporary files, such as virtuous and

tropical. Subsequently, another malicious instance of the firefox.exe malware initiates

a domino effect by creating a chain of processes by executing the malware template. This

dependency correlation between the malware and its parent is characterized by functional

inheritance, where the children require the same system library files as the parent to function

correctly. The DLLs involved are read from ProgramFiles and System32.

GNNExplainer and PGExplainer correctly identified the data extraction stage where four

malicious firefox.exe processes make C2 connections to the external IPs (202.179.137.58

and 217.160.205.44). firefox.exe was invoked by malware masquerading as runtimebroker.exe,

so if GNNExplainer masks out the process creation edge of the children firefox.exe, that

would lead to a graph cut with two separate graphs, leading to a change in the predic-

tion. SubgraphX also highlighted similar firefox.exe processes that are created by the

first runtimebroker.exe, but instead of making external C2 connection it created another

firefox.exe process for rendering content from localhost (127.0.0.1).

ProvExplainer vs. SOTA Explainers. GNNExplainer and PGExplainer pinpoint the

stage where multiple Firefox processes connect to the C2 servers. This activity traces

back to the malicious runtimebroker instance. Notably, SubgraphX detects an alternate

trajectory where a Firefox process, instead of reaching out to external servers, spawns

another process aimed at local content manipulation, showcasing the malware’s versatility

in engaging with both external and internal resources for its objectives.

While SOTA explainers have demonstrated proficiency in identifying the final stages

of this data breach, only ProvExplainer effectively captured both the initial infection

and its propagation. This distinction underscores the importance of recognizing early-stage

indicators for root cause analysis.

115

202.179.137.58
217.160.205.44
127.0.0.1

5.9.3 Trace: Phishing E-mail

(a) Malicious patterns identified by ProvEx-
plainer. (b) GNN explainations comparison.

Figure 5.9: Trace: after an employee clicks on a phishing link, Firefox installs multiple
Trojans to exfiltrate sensitive data.

Description. The attacker first launches a phishing campaign to compromise the identity of

an employee. Leveraging the employee’s identity, the attacker then targets other employees

with deceptive emails containing links to a malicious website. This website installs a Trojan

in the victims’ computers, which then creates multiple copies of itself, overflowing the system.

These cloned Trojans read sensitive user files while the original Trojan achieves persistence

in the system.

Features: Probe Triangle, Exploding Square, and Jellyfish.

System Interpretation. In the Trace APT scenario, the Probe Triangle, Exploding Square,

and Jellyfish patterns elucidate the malware’s structure (Figure 5.9a). The Probe Triangle

reveals the Trojan’s cloning activity, where it is downloaded and replicates itself to estab-

116

lish a foothold. By masquerading as benign programs, the malware disguises its malicious

processes, allowing it to proliferate undetected.

The Trojan, after establishing itself, impersonates system processes to execute a mali-

cious script, leading to the creation of multiple copies. The Jellyfish pattern illustrates the

dependency correlation among the cloned malware instances, interacting with similar system

configuration files to operate efficiently as well as constructing a detailed profile of the target

system. Ultimately, the extraction of data from sensitive system files is captured by the

Exploding Square. This extraction is part of a larger scheme of lateral movement by profiling

the available system processes, enabling the malware to leverage system libraries effectively.

System Connection. The Probe Triangle captured the staging behavior of the Trojan. The

Trojan was downloaded from www.nasa.ng, executed and replicated itself within the system.

Specifically, the malware named nasa.ng is placed in /home/admin/.mozilla/firefox/

and /usr/local/firefox-54.0.1/obj-x86_64-pc-linux-gnu/. The Trojan created new

malware with benign names such as firefox to effectively evade detectors, to replicate

unhindered and overloaded the system with malicious processes. After the malware suc-

cessfully staged, the malware masquerading as /bin/sh to read the malicious script staged

in (/etc/update-motd.d/00-header/) and executed it to create multiple copies of itself.

The malware reads various system configuration files present in /etc/protocols/, /etc/

lsb-release/, and /etc/hosts.deny/. Reading sensitive system configuration files are es-

sential to build the system profile. The Jellyfish shape captured the dependency correlation

of the malwares being created that inherited similar configuration.

Ultimately, the malware completes its target of reading sensitive system files from /etc/

fonts/conf.d/, /usr/lib/x86_64-linux-gnu/, and /usr/share/X11/local/. These ac-

tivities are aimed at gathering system information to create a profile of the company and the

devices in use. The attacker wants to create a profile of the victim environment to ensure

their malware can effectively leverage system libraries to complete their objective. There

117

www.nasa.ng

is an overlap in the files (present in \etc\hosts and /usr/lib/x86_64-linux-gnu/*) in-

volved in the Probe Triangle and Jellyfish operations because the malware replicates itself

probing and inheriting the functional dependencies of its parent.

GNNExplainer was able to correctly capture the staging behavior where the malware

from nasa.ng read shared library (/usr/lib/x86_64-linux-gnu/*.so.*) and cache file

(/usr/share/applications/mimeinfo.cache, /usr/lib/x86_64-linux-gnu/*/loaders.

cache). PGExplainer incorrectly indicated benign substructures, but SubgraphX correctly

captured the inheritance behavior of firefox.exe executing multiple times with the ar-

gument file http://www.nasa.ng/, to create the malware clones from the template. SOTA

explainers missed the malware’s ultimate goal of reading sensitive files, which was only cap-

tured by ProvExplainer.

ProvExplainer vs. SOTA explainers. GNNExplainer identifies the initial malware

staging behaviors, including interactions with shared libraries and cache files. Meanwhile,

PGExplainer captures the benign structure of xfce4-appfinder—a lightweight desktop

environment for UNIX systems, invoked by a DARPA script to simulate an enterprise envi-

ronment. SubgraphX identifies the malicious inheritance behavior of Firefox executing a

template to generate multiple malware clones. However, it overlooks sensitive file accesses, a

detail exclusively captured by ProvExplainer. ProvExplainer comprehensively traced

the malware kill chain from payload deployment and clone creation to the final step of

accessing sensitive files.

118

http://www.nasa.ng/

CHAPTER 6

FUTURE WORK AND CONCLUSION

System provenance is a vast research area with many unsolved problems. With the contri-

bution of this dissertation, certainly, we have not solved all the challenges. However, this

is a step towards solving three long-standing provenance domain problems: scalability in

computationally limited IoT environments, resilience against adversarial manipulation, and

interpretability of security alerts. In the following section, we discuss the current limitations

of this dissertation and our thoughts on solving them.

6.1 Future Research Directions

6.1.1 Real-Time Prevention

Although we focus on a detection in this dissertation, ProvIoT can be easily extended to

provide real-time prevention (e.g., blocking or killing anomalous processes). ProvIoT can

also be augmented with other triaging and defense mechanisms (e.g., dynamic quarantine or

deep inspection) when it raises alerts. ProvIoT supports online forensic analysis including

backtracking analysis and data query by leveraging its extensive system event collection.

6.1.2 Automated Evasive Attack Generation

Currently, the attack vectors generated by ProvNinja must be implemented manually,

which is a labor-intensive process that requires significant domain knowledge and technical

expertise. If ProvNinja were integrated with attack implementation frameworks (Metas-

ploit, 2021; ATT&CK®, 2022b), it would dramatically reduce the required domain expertise,

resource overhead, and time cost to construct real attack chains to either deploy offensively

or to use as defensive training exercises. Further, such an integration would necessarily be

aware of the security implications of each process transition, and therefore be capable of

automatically preserving attack semantics.

119

6.1.3 Defense Against Evasive Attacks

Despite approaching the task from the adversary’s perspective, ProvNinja research will

help defenders by providing a tool to generate potential attack sequences to harden their

security models. ML detectors, when trained in an adversarial way against these evasive

attacks, can uncover events that are either robust against evasive modification or crucial

components of the attacks. Additionally, ProvNinja only focuses on improving the one-

hop likelihood of events in the malicious chains; by overcoming the challenge of focusing

on long-range casual dependencies, defenders can unmask the anomalies induced by the

malicious behavior. We leave dedicated defense model training against evasive mimicry

attacks as important future work.

For defenders, natively integrating ProvNinja with a adversarial training framework

for provenance-based ML detectors will help defense models pinpoint the subtle differences

between regular users and stealthy attackers. Because defenders can perform the strongest

form of ProvNinja with access to the true target dataset, defense models that perform

well in this training are also likely to detect ProvNinja-style APT attacks in the wild.

6.1.4 Environmental Dependencies of Evasive Attacks

Unlike traditional ML research where the problem space is similar to the feature space

(e.g., image processing), it is impossible to fully replicate the victim’s problem space en-

vironment (target system with normal concurrent user activity). An adversarial attack

generated with the attacker’s environment will therefore typically differ from an attack gen-

erated with the real victim environment. The quantification of ProvNinja’s sensitivity to

environmental differences would help gauge the practicality of its application in the wild.

120

6.1.5 Adversarial Manipulation of Graph Features

We look at what are the implications of attackers using knowledge of the graph structural

features to design adversarial attacks against the GNN-based IDS explainer. The explainer

models used in ProvExplainer is separate from the black-box detection model. Fooling

both the interpretable surrogates and the underlying black-box model is the ideal case for an

attacker seeking to avoid suspicion, and an attacker who can attack the explainer this way can

also attack the detection model directly (Goyal et al., 2023; Mukherjee et al., 2023). Creating

robust detection and explanation systems that can withstand adversarial manipulation is a

critical open research problem, and is beyond the scope of ProvExplainer.

6.1.6 Support for Fine-Grained Detection Tasks

Recent developments in provenance-based security detection systems have trended towards

fine-grained node and edge level anomaly detection (Rehman et al., 2024; Zengy et al., 2022).

The explanation requirements of these detectors differ from those of whole-graph anomaly

detectors and classifiers. In contrast to using explanations to narrow down the context for

consideration by security practitioners, fine-grained models will need explainers to bring in

relevant context to aid human analysis. Providing security-aware explanation to advanced

fine-grained security detectors is an exciting and important direction for future work.

6.2 Conclusion

In this dissertation, we have illustrated the importance of scalable, robust, and explainable

provenance-based intrusion detection systems (PIDS) in the area of infrastructure security.

We demonstrated how we solved three key challenges in system provenance analysis.

First, we presentedProvIoT, a novel end-to-end edge-cloud collaborative security frame-

work for IoT devices. ProvIoT adapts modern provenance-based anomaly detection for IoT

121

environments, performing on-device training and detection using federated learning. This

approach ensures privacy for local system events while maintaining high detection accuracy

and low resource overhead. Through extensive evaluation with a realistic provenance dataset,

ProvIoT demonstrated exceptional performance, detecting Fileless malware and APT at-

tacks. Additionally, ProvIoT incurs minimal resource overhead, and operates effectively

without requiring continuous network connectivity. These results highlight the framework’s

suitability for robust and privacy-preserving detection in resource-constrained IoT devices.

Next, we introduced ProvNinja, a data-driven evasive attack generation framework

designed to exploit vulnerabilities in PIDS by replicating the behavioral patterns of benign

system programs. Our research is the first to explore the design space of evasive attack

generation, overcoming the challenge of bridging the gap between system actions and their

feature space representations. ProvNinja successfully generated and deployed evasive at-

tacks against multiple ML detectors, demonstrating significant reduction in defense model F1

scores. These attacks are not only theoretical but are actualized in real-world environments,

posing a significant threat to existing PIDS models. This work provides valuable insights

into the weaknesses of PIDS and establishes ProvNinja as a practical tool for evaluating

the resilience of security models against evasive threats.

Finally, we introduced ProvExplainer, a framework that enhances transparency and

accountability in PIDS by defining security-aware graph structural features with corre-

sponding system-level interpretations. By leveraging these interpretable features, ProvEx-

plainer successfully approximates decisions made by complex GNN on tasks such as APT

detection, Fileless malware detection, and program classification. Our case studies, using

real-world APTs, showed that ProvExplainer improves the explainability of GNN-based

PIDS systems, over SOTA GNN explainers. Furthermore, the combination of SOTA GNN

explainers with ProvExplainer provided more stable and complete explanations, lead-

ing to an additional increase in explainability metrics. This framework marks a significant

advancement toward achieving transparency and trustworthiness in PIDS decision-making.

122

In conclusion, this dissertation has demonstrated the critical role of system provenance in

addressing modern security challenges, particularly in resource-constrained environments like

IoT devices, the generation of adversarial attacks to test the robustness of PIDS models, and

the development of interpretable frameworks to ensure transparency in GNN-based security

systems. Together, these contributions represent a significant step towards the evolution of

scalable, robust, and explainable provenance-based intrusion detection systems (PIDSs).

123

REFERENCES

(2015). Apple watch ram size comparison chart: How much ram does apple watch
have? https://www.knowyourmobile.com/wearable-technology/apple-watch-ram-size/.
(Accessed on 05/26/2023).

(2015). Google nest - support. https://support.google.com/googlenest/answer/9230098.
(Accessed on 05/26/2023).

(2017). Google home mini teardown, comparison to echo dot, and giving technology a voice.
https://tinyurl.com/ykbay2fu. (Accessed on 05/26/2023).

(2018). Bcryptprimitives.dll. http://tinyurl.com/yvpesvzt. (Accessed on 01/21/2024).

(2018). Mimikatz. http://tinyurl.com/3styvesw. (Accessed on 01/21/2024).

(2018). Ntdll.dll. http://tinyurl.com/yc2z88px. (Accessed on 01/21/2024).

(2018). Raspberry Pi – Teach, Learn, and Make with Raspberry Pi. https://www.
raspberrypi.org.

(2019). Cuckoo sandbox. https://tinyurl.com/33jdwr93. Accessed: April 6, 2023.

(2019). Trojan.win32.scar.ad. https://tinyurl.com/3sdj642z.

(2020). Inside amazon’s ring alarm system. https://tinyurl.com/yck5jm4m. (Accessed on
05/26/2023).

(2020). Suricata. https://suricata.io/. Accessed: April 6, 2023.

(2020). Yara. https://virustotal.github.io/yara/. Accessed: April 6, 2023.

(2021). Cyber kill chain® — lockheed martin. https://www.lockheedmartin.com/en-us/
capabilities/cyber/cyber-kill-chain.html. (Accessed on 07/24/2021).

(2021). Nssm - the non-sucking service manager alternatives. https://tinyurl.com/2p8n5kca.
Accessed: April 6, 2023.

(2021). Snort. https://www.snort.org/. Accessed: April 6, 2023.

(2022). Cve-2022-21882. https://tinyurl.com/2p9cmftm. Accessed: April 6, 2023.

(2022). Smart refrigerator with family hub. https://tinyurl.com/4kz6z6z5. (Accessed on
05/26/2023).

(2023a). Canvas. http://tinyurl.com/y4wrf74u.

124

https://www.knowyourmobile.com/wearable-technology/apple-watch-ram-size/
https://support.google.com/googlenest/answer/9230098
https://tinyurl.com/ykbay2fu
http://tinyurl.com/yvpesvzt
http://tinyurl.com/3styvesw
http://tinyurl.com/yc2z88px
https://www.raspberrypi.org
https://www.raspberrypi.org
https://tinyurl.com/33jdwr93
https://tinyurl.com/3sdj642z
https://tinyurl.com/yck5jm4m
https://suricata.io/
https://virustotal.github.io/yara/
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://tinyurl.com/2p8n5kca
https://www.snort.org/
https://tinyurl.com/2p9cmftm
https://tinyurl.com/4kz6z6z5
http://tinyurl.com/y4wrf74u

(2023b). Canvas. http://tinyurl.com/yaknev56.

Acar, A., H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti, A.-
R. Sadeghi, and S. Uluagac (2020). Peek-a-boo: I see your smart home activities, even
encrypted! In Proceedings of the 13th ACM Conference on Security and Privacy in Wire-
less and Mobile Networks, WiSec ’20, New York, NY, USA, pp. 207–218. Association for
Computing Machinery.

Ahmad, A., S. Lee, and M. Peinado (2022, 5). HARDLOG: Practical Tamper-Proof Sys-
temAuditing Using a Novel Audit Device. In Security and Privacy (SP), Security and
Privacy (SP).

ATT&CK®, M. (2017). Data from local system. https://attack.mitre.org/techniques/
T1005/.

ATT&CK®, M. (2018a). Exfiltration. https://attack.mitre.org/tactics/TA0010/.

ATT&CK®, M. (2018b). Exploitation for client execution. hhttp://tinyurl.com/muhzctfb.

ATT&CK®, M. (2018c). System information discovery. https://attack.mitre.org/
techniques/T1082/.

ATT&CK®, M. (2020). Create or modify system process. https://attack.mitre.org/
techniques/T1543/.

ATT&CK®, M. (2021a). Compromise client software binary. https://attack.mitre.org/
techniques/T1554/. Accessed on 11/29/2021.

ATT&CK®, M. (2021b). Data collection. https://attack.mitre.org/tactics/TA0004/. Ac-
cessed: April 6, 2023.

ATT&CK®, M. (2021c). Data manipulation. ATT&CK. Accessed: April 6, 2023.

ATT&CK®, M. (2021d). gsecdump. https://attack.mitre.org/software/S0008/. Accessed:
April 6, 2023.

ATT&CK®, M. (2021e). Process injection: Dynamic-link library injection. https://attack.
mitre.org/techniques/T1534/. Accessed: April 6, 2023.

ATT&CK®, M. (2021f). Process injection: Ptrace system calls, sub-technique t1055.008
- enterprise — mitre att&ck®. https://attack.mitre.org/techniques/T1055/008/. (Ac-
cessed on 07/23/2021).

ATT&CK®, M. (2022a). Initial access: Tactics, techniques, and procedures. https://attack.
mitre.org/tactics/TA0001/. Accessed: April 6, 2023.

125

http://tinyurl.com/yaknev56
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/tactics/TA0010/
hhttp://tinyurl.com/muhzctfb
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1543/
https://attack.mitre.org/techniques/T1543/
https://attack.mitre.org/techniques/T1554/
https://attack.mitre.org/techniques/T1554/
https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/software/S0008/
https://attack.mitre.org/techniques/T1534/
https://attack.mitre.org/techniques/T1534/
https://attack.mitre.org/techniques/T1055/008/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001/

ATT&CK®, M. (2022b). Mitre att&ck®. https://attack.mitre.org/. Accessed: April 6,
2023.

Avllazagaj, E., Z. Zhu, L. Bilge, D. Balzarotti, and T. Dumitras (2021). When malware
changed its mind: An empirical study of variable program behaviors in the real world. In
USENIX Security Symposium (SEC).

Bahşi, H., S. Nõmm, and F. B. La Torre (2018). Dimensionality reduction for machine
learning based iot botnet detection. In 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 1857–1862. IEEE.

Bansal, A., A. Kandikuppa, C.-Y. Chen, M. Hasan, A. Bates, and S. Mohan (2022). Towards
efficient auditing for real-time systems. In Computer Security–ESORICS 2022: 27th Eu-
ropean Symposium on Research in Computer Security, Copenhagen, Denmark, September
26–30, 2022, Proceedings, Part III, pp. 614–634. Springer.

Barbero, F., F. Pendlebury, F. Pierazzi, and L. Cavallaro (2022). Transcending transcend:
Revisiting malware classification in the presence of concept drift. In IEEE Symposium on
Security and Privacy (SP).

Bareckas, K. (2022). The mydoom worm: history, technical details, and defense. https:
//nordvpn.com/blog/mydoom-virus/.

Barr-Smith, F., X. Ugarte-Pedrero, M. Graziano, R. Spolaor, and I. Martinovic (2021).
Survivalism: Systematic Analysis of Windows Malware Living-Off-The-Land. In IEEE
Symposium on Security and Privacy (SP).

Bostani, H. and M. Sheikhan (2017). Hybrid of anomaly-based and specification-based ids
for internet of things using unsupervised opf based on mapreduce approach. Computer
Communications 98, 52–71.

Breunig, M. M., H.-P. Kriegel, R. T. Ng, and J. Sander (2000). Lof: Identifying density-based
local outliers.

Carlini, N. (2019). A complete list of all (arxiv) adversarial example papers. https://tinyurl.
com/3cvur5j7. Accessed: April 6, 2023.

Chaudhary, A., H. Mittal, and A. Arora (2019). Anomaly detection using graph neural
networks. In International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon).

Chawathe, S. S. (2018). Monitoring iot networks for botnet activity. In 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA), pp. 1–8. IEEE.

126

https://attack.mitre.org/
https://nordvpn.com/blog/mydoom-virus/
https://nordvpn.com/blog/mydoom-virus/
https://tinyurl.com/3cvur5j7
https://tinyurl.com/3cvur5j7

Cheng, Z., Q. Lv, J. Liang, Y. Wang, D. Sun, T. Pasquier, and X. Han (2024). Kairos:
Practical intrusion detection and investigation using whole-system provenance. In IEEE
Symposium on Security and Privacy (SP).

Cosson, A., A. K. Sikder, L. Babun, Z. B. Celik, P. McDaniel, and A. S. Uluagac (2021).
Sentinel: A robust intrusion detection system for iot networks using kernel-level system
information. In Proceedings of the International Conference on Internet-of-Things Design
and Implementation, pp. 53–66.

Costin, A. and J. Zaddach (2019). IoT Malware: Comprehensive Survey, Analysis Framework
and Case Studies. BlackHat Briefings.

Cozzi, E., M. Graziano, Y. Fratantonio, and D. Balzarotti (2018a). Understanding linux
malware. In 2018 IEEE symposium on security and privacy (SP), pp. 161–175. IEEE.

Cozzi, E., M. Graziano, Y. Fratantonio, and D. Balzarotti (2018b). Understanding linux
malware. In IEEE Symposium on Security and Privacy (SP).

Crowdstrike (2018). Wannamine cryptomining: Harmless nuisance or disruptive threat?
http://tinyurl.com/ycxvukjk.

CrowdStrkie (2020). ENDPOINT DETECTION AND RESPONSE (EDR). Technical re-
port, CrowdStrkie.

Cybersecurity, A. (2021, Jan). Malware using new ezuri memory loader
— at&t alien labs. https://cybersecurity.att.com/blogs/labs-research/
malware-using-new-ezuri-memory-loader. (Accessed on 07/23/2021).

DARPA. Ta5.1 ground truth report engagement 3. https://drive.google.com/file/d/
1mrs4LWkGk-3zA7t7v8zrhm0yEDHe57QU.

DARPA (2019). Transparent computing engagement 5. https://github.com/darpa-i2o/
Transparent-Computing/blob/master/README-E3.md.

Demontis, A., M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru,
and F. Roli (2019, 8). Why do adversarial attacks transfer? explaining transferability of
evasion and poisoning attacks. In USENIX Security Symposium (SEC).

DGL (2022). Deep graph library: Easy deep learning on graphs. https://www.dgl.ai/.
(Accessed on 09/21/2021).

die.net (2017). Linux man page. https://linux.die.net/man/.

Ding, F. (2017). Iot malware. https://github.com/ifding/iot-malware.

127

http://tinyurl.com/ycxvukjk
https://cybersecurity.att.com/blogs/labs-research/malware-using-new-ezuri-memory-loader
https://cybersecurity.att.com/blogs/labs-research/malware-using-new-ezuri-memory-loader
https://drive.google.com/file/d/1mrs4LWkGk-3zA7t7v8zrhm0yEDHe57QU
https://drive.google.com/file/d/1mrs4LWkGk-3zA7t7v8zrhm0yEDHe57QU
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://www.dgl.ai/
https://linux.die.net/man/
https://github.com/ifding/iot-malware

Ding, F., H. Li, F. Luo, H. Hu, L. Cheng, H. Xiao, and R. Ge (2020). Deeppower: Non-
intrusive and deep learning-based detection of iot malware using power side channels. In
Proceedings of the 15th ACM Asia Conference on Computer and Communications Security,
pp. 33–46.

Eddy, N. (2024). Ukraine military targeted with russian apt powershell attack. https:
//shorturl.at/Bdx7x.

Fang, P., P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu, and X. Xiao (2022,
8). Back-Propagating System Dependency Impact for Attack Investigation. In USENIX
Security Symposium (SEC).

Fei, P., Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee (2021, 8). SEAL: Storage-efficient Causal-
ity Analysis on Enterprise Logs with Query-friendly Compression. In USENIX Security
Symposium (SEC).

Fernandes, E., J. Jung, and A. Prakash (2016). Security Analysis of Emerging Smart Home
Applications. In IEEE S&P.

FireEye (2020). Evasive attacker leverages solarwinds supply chain compromises with sun-
burst backdoor. https://tinyurl.com/bdz8s5yn.

Forrest, C. (2017). Iot is a gold mine for hackers using fileless malware for cyberattacks.
https://tinyurl.com/ytnmhax8. Accessed: April 6, 2023.

Ganz, T., P. Rall, M. Härterich, and K. Rieck (2023). Hunting for truth: Analyzing ex-
planation methods in learning-based vulnerability discovery. In 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P).

Google (2018). Google Assistant, your own personal Google. https://assistant.google.com/.

Google (2021a). Edge tpu - run inference at the edge — google cloud. https://cloud.google.
com/edge-tpu. (Accessed on 07/23/2021).

Google (2021b). Intro to autoencoders.

Goyal, A., X. Han, G. Wang, and A. Bates (2023). Sometimes, you aren’t what you do:
Mimicry attacks against provenance graph host intrusion detection systems. In Network
and Distributed System Security Symposium (NDSS).

Goyal, A., G. Wang, and A. Bates (2024). R-caid: Embedding root cause analysis within
provenance-based intrusion detection. In IEEE Symposium on Security and Privacy (SP).

Grammatikakis, K. P., I. Koufos, N. Kolokotronis, C. Vassilakis, and S. Shiaeles (2021). Un-
derstanding and mitigating banking trojans: From zeus to emotet. In IEEE International
Conference on Cyber Security and Resilience (CSR).

128

https://shorturl.at/Bdx7x
https://shorturl.at/Bdx7x
https://tinyurl.com/bdz8s5yn
https://tinyurl.com/ytnmhax8
https://assistant.google.com/
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu

Guo, W., D. Mu, J. Xu, P. Su, G. Wang, and X. Xing (2018, 11). Lemna: Explaining deep
learning based security applications. In ACM conference on Computer and Communica-
tions Security (CCS).

Hamilton, W., Z. Ying, and J. Leskovec (2017). Inductive representation learning on large
graphs.

Han, X., T. Pasquier, A. Bates, J. Mickens, and M. Seltzer (2020). UNICORN: Runtime
Provenance-Based Detector for Advanced Persistent Threats. In Network and Distributed
System Security Symposium (NDSS).

Han, X., X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer, and H. Chen (2021).
Sigl: Securing software installations through deep graph learning. In USENIX Security
Symposium (SEC).

Harpaz, O. (2020). Fritzfrog: A new generation of peer-to-peer botnets - guardicore. https:
//bit.ly/3mJzyeq. (Accessed on 07/23/2021).

Hassan, W. U., S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates (2019). NoDoze:
Combatting Threat Alert Fatigue with Automated Provenance Triage. In Network and
Distributed System Security Symposium (NDSS).

Herath, J. D., P. P. Wakodikar, P. Yang, and G. Yan (2022). Cfgexplainer: Explaining graph
neural network-based malware classification from control flow graphs. In 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

Hossain, M. N., S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar, S. Stoller, and
V. Venkatakrishnan (2018). Sleuth: Real-time attack scenario reconstruction from cots
audit data. In USENIX Security Symposium (SEC).

Hossain, M. N., S. Sheikhi, and R. Sekar (2020, 05). Combating Dependence Explosion in
Forensic Analysis Using Alternative Tag Propagation Semantics. In IEEE Symposium on
Security and Privacy (SP).

Inam, M. A., Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur, A. Bates, and W. U.
Hassan (2023). SoK: History is a Vast Early Warning System: Auditing the Provenance
of System Intrusions. In IEEE Symposium on Security and Privacy (SP).

Jacobs, A. S., R. Beltiukov, W. Willinger, R. A. Ferreira, A. Gupta, and L. Z. Granville
(2022, 11). Ai/ml for network security: The emperor has no clothes. In ACM Conference
on Computer and Communications Security (CCS).

Jha, M., C. Seshadhri, and A. Pinar (2015). Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Proceedings of the 24th international conference
on world wide web.

129

https://bit.ly/3mJzyeq
https://bit.ly/3mJzyeq

Jia, Y. J., Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, and A. Prakash

(2017). ContexIoT: Towards Providing Contextual Integrity to Appified IoT Platforms.

In NDSS.

Jia, Z., Y. Xiong, Y. Nan, Y. Zhang, J. Zhao, and M. Wen (2024). Magic: Detecting

advanced persistent threats via masked graph representation learning. In USENIX Security

Symposium (SEC).

Kaspersky (2020). Fileless threats protection. https://tinyurl.com/vbb9xk47. Accessed:

April 6, 2023.

King, S. T. and P. M. Chen (2003a). Backtracking intrusions. In Proceedings of the nineteenth

ACM symposium on Operating systems principles.

King, S. T. and P. M. Chen (2003b). Backtracking intrusions. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI).

Kipf, T. N. and M. Welling (2016). Variational graph auto-encoders.

kodi (2018). Kodi — Open Source Home Theater Software. https://kodi.tv/.

Kolda, T. G., A. Pinar, T. Plantenga, C. Seshadhri, and C. Task (2014). Counting triangles

in massive graphs with mapreduce. SIAM Journal on Scientific Computing .

Kosan, M., S. Verma, B. Armgaan, K. Pahwa, A. Singh, S. Medya, and S. Ranu (2023).

Gnnx-bench: Unravelling the utility of perturbation-based gnn explainers through in-

depth benchmarking.

Küchler, A., A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti (2021). Does every second

count? time-based evolution of malware behavior in sandboxes. In Network and Distributed

System Security Symposium (NDSS).

Kumar, A. and T. J. Lim (2019). Early detection of mirai-like iot bots in large-scale networks

through sub-sampled packet traffic analysis. arXiv preprint arXiv:1901.04805 .

Kurakin, A., I. Goodfellow, and S. Bengio (2016). Adversarial machine learning at scale.

arXiv preprint arXiv:1611.01236 .

Lamport, L., R. Shostak, and M. Pease (1982, July). The byzantine generals problem. ACM

Trans. Program. Lang. Syst. 4 (3), 382–401.

Le, Q. and T. Mikolov (2014). Distributed representations of sentences and documents. In

International conference on machine learning, pp. 1188–1196.

130

https://tinyurl.com/vbb9xk47
https://kodi.tv/

Li, Z., Q. A. Chen, R. Yang, Y. Chen, and W. Ruan (2021). Threat detection and in-

vestigation with system-level provenance graphs: a survey. Computers & Security 106,

102282.

Liu, Y., M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal. Towards a Timely

Causality Analysis for Enterprise Security. In Network and Distributed System Security

Symposium (NDSS).

Luo, D., W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang (2020). Parameterized

explainer for graph neural network.

Malwarebytes (2022). North korea’s lazarus apt leverages windows update client, github in

latest campaign. https://tinyurl.com/mr4h7d35.

McMahan, B., E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas (2017).

Communication-efficient learning of deep networks from decentralized data. In Artificial

Intelligence and Statistics, pp. 1273–1282. PMLR.

Meidan, Y., M. Bohadana, Y. Mathov, Y. Mirsky, D. Breitenbacher, A. Shabtai, and

Y. Elovici (2018). N-baiot: Network-based detection of iot botnet attacks using deep

autoencoders. arXiv preprint arXiv:1805.03409 .

Metasploit (2021). metasploit. https://www.metasploit.com/. (Accessed on 11/29/2021).

MetasploitVenom (2021). Offensive security. https://tinyurl.com/37fdcmkf. Accessed: April

6, 2023.

Michael, N., J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates (2020). On the forensic

validity of approximated audit logs. In Proceedings of the 36th Annual Computer Security

Applications Conference, pp. 189–202.

Microsoft (2015). Event Tracing. https://docs.microsoft.com/en-us/windows/desktop/

ETW/event-tracing-portal.

Milajerdi, S. M., R. Gjomemo, B. Eshete, R. Sekar, and V. N. Venkatakrishnan (2019).

HOLMES - Real-Time APT Detection through Correlation of Suspicious Information

Flows. In IEEE Symposium on Security and Privacy (SP).

mirai (2016). Mirai Attacks. https://goo.gl/QVv89r.

Moosavi-Dezfooli, S.-M., A. Fawzi, and P. Frossard (2016). Deepfool: a simple and accurate

method to fool deep neural networks. In IEEE conference on computer vision and pattern

recognition (CVPR).

131

https://tinyurl.com/mr4h7d35
https://www.metasploit.com/
https://tinyurl.com/37fdcmkf
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://goo.gl/QVv89r

Mothukuri, V., P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Srivastava
(2021). Federated-learning-based anomaly detection for iot security attacks. IEEE Internet
of Things Journal 9 (4), 2545–2554.

motion (2018). Motion. https://motion-project.github.io/.

Mukherjee, K., J. Wiedemeier, T. Wang, J. Wei, F. Chen, M. Kim, M. Kantarcioglu, and
K. Jee (2023). Evading provenance-based ml detectors with adversarial system actions.
In USENIX Security Symposium (SEC).

Nguyen, A., J. Yosinski, and J. Clune (2015). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In IEEE conference on computer vision
and pattern recognition (CVPR).

Nguyen, T. D., S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and A.-R. Sadeghi (2018).
Diot: A crowdsourced self-learning approach for detecting compromised iot devices. arXiv
preprint arXiv:1804.07474 .

Nõmm, S. and H. Bahşi (2018). Unsupervised anomaly based botnet detection in iot net-
works. In 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 1048–1053. IEEE.

NVIDIA (2022). Nvidia jetson nano developer kit — nvidia developer. https://developer.
nvidia.com/embedded/jetson-nano-developer-kit. (Accessed on 07/23/2021).

O’Kane, P., S. Sezer, and K. McLaughlin (2011, 05). Obfuscation: The hidden malware. In
IEEE Symposium on Security and Privacy (SP).

Ozcelik, M., N. Chalabianloo, and G. Gur (2017). Software-defined edge defense against
iot-based ddos. In 2017 IEEE International Conference on Computer and Information
Technology (CIT), pp. 308–313. IEEE.

Pan, S., R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang (2019). Adversarially regularized
graph autoencoder for graph embedding.

Paramonov, K., D. Shemetov, and J. Sharpnack (2019). Estimating graphlet statistics via
lifting. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Phillips, G. (2021). What is a drive-by download malware attack? http://tinyurl.com/
yzbecvj5.

Pierazzi, F., F. Pendlebury, J. Cortellazzi, and L. Cavallaro (2020, 05). Intriguing Properties
of Adversarial ML Attacks in the Problem Space. In IEEE Symposium on Security and
Privacy (SP).

132

https://motion-project.github.io/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
http://tinyurl.com/yzbecvj5
http://tinyurl.com/yzbecvj5

Raza, S., L. Wallgren, and T. Voigt (2013). Svelte: Real-time intrusion detection in the
internet of things. Ad hoc networks 11 (8), 2661–2674.

Redhat (2017). The linux audit framework. https://github.com/linux-audit/.

Rehman, M. U., H. Ahmadi, and W. U. Hassan (2024). FLASH: A Comprehensive Ap-
proach to Intrusion Detection via Provenance Graph Representation Learning. In IEEE
Symposium on Security and Privacy (SP).

Rieger, P., M. Chilese, R. Mohamed, M. Miettinen, H. Fereidooni, and A.-R. Sadeghi (2023,
8). Argus: Context-based detection of stealthy iot infiltration attacks.

Seshadhri, C., A. Pinar, and T. G. Kolda (2013). Fast triangle counting through wedge
sampling. In Proceedings of the SIAM Conference on Data Mining.

Shahid, O., V. Mothukuri, S. Pouriyeh, R. M. Parizi, and H. Shahriar (2021). Detecting
network attacks using federated learning for iot devices. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP), pp. 1–6. IEEE.

Sikder, A. K., H. Aksu, and A. S. Uluagac (2017, August). 6thSense: A context-aware
sensor-based attack detector for smart devices. In 26th USENIX Security Symposium
(USENIX Security 17), Vancouver, BC, pp. 397–414. USENIX Association.

Sikder, A. K., H. Aksu, and A. S. Uluagac (2020). A context-aware framework for detecting
sensor-based threats on smart devices. IEEE Transactions on Mobile Computing 19 (2),
245–261.

Sikder, A. K., G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac (2021). A survey on
sensor-based threats and attacks to smart devices and applications.

Sivaraman, V., H. H. Gharakheili, A. Vishwanath, R. Boreli, and O. Mehani (2015). Network-
level security and privacy control for smart-home iot devices. In WiMob, pp. 163–167.

Someya, M., Y. Otsubo, and A. Otsuka (2023, 02). Fcgat: Interpretable malware clas-
sification method using function call graph and attention mechanism. In Network and
Distributed System Security Symposium (NDSS), Volume 1.

Song, J., M. Kim, N. D. Lane, R. K. Balan, F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen,
T. Xu, Y. Chen, and J. Yang (2019). Understanding Fileless Attacks on Linux-based IoT
Devices with HoneyCloud. Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services .

Song, Y., M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo (2007). On the
infeasibility of modeling polymorphic shellcode. In ACM conference on Computer and
Communications Security (CCS).

133

Sood, A. K. and S. Zeadally (2016). Drive-by download attacks: A comparative study. IT
Professional .

Strike, C. (2023). Cobalt strike — adversary simulation and red team operations. https:
//www.cobaltstrike.com/.

Tang, Y., D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee, F. Xu, and Q. Li (2018, 11).
NodeMerge: Template Based Efficient Data Reduction For Big-Data Causality Analysis.
In ACM conference on Computer and Communications Security (CCS).

Telychko, V. (2024). Gamaredon attack detection: Cyber-espionage opera-
tions against ukraine by the russia-linked apt. https://socprime.com/blog/
gamaredon-attack-detection-cyber-espionage-operations-against-ukraine/.

ThreatIntelligence (2023). Mitre att&ck framework: All you ever wanted to know. http:
//tinyurl.com/5n6jt5pt.

Tramèr, F., A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel (2017).
Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 .

trustzone (2018). Introducing Arm TrustZone. https://developer.arm.com/technologies/
trustzone.

Ugander, J., L. Backstrom, and J. Kleinberg (2013). Subgraph frequencies: Mapping the
empirical and extremal geography of large graph collections. In Proceedings of the 22nd
international conference on World Wide Web.

Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio (2017). Graph
attention networks. arXiv preprint arXiv:1710.10903 .

VirusTotal (2021). Virustotal. https://www.virustotal.com/. Accessed: April 6, 2023.

vpnfilter (2018). VPNFilter. https://blog.talosintelligence.com/2018/05/VPNFilter.html.

Wang, J., S. Hao, R. Wen, B. Zhang, L. Zhang, H. Hu, and R. Lu (2020). Iot-praetor:
Undesired behaviors detection for iot devices. IEEE Internet of Things Journal 8 (2),
927–940.

Wang, Q., W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen, W. Cheng, C. A.
Gunter, and H. Chen (2020). You Are What You Do: Hunting Stealthy Malware via Data
Provenance Analysis. In Network and Distributed System Security Symposium (NDSS).

Warnecke, A., D. Arp, C. Wressnegger, and K. Rieck (2019). Don’t paint it black: White-box
explanations for deep learning in computer security. CoRR.

134

https://www.cobaltstrike.com/
https://www.cobaltstrike.com/
https://socprime.com/blog/gamaredon-attack-detection-cyber-espionage-operations-against-ukraine/
https://socprime.com/blog/gamaredon-attack-detection-cyber-espionage-operations-against-ukraine/
http://tinyurl.com/5n6jt5pt
http://tinyurl.com/5n6jt5pt
https://developer.arm.com/technologies/trustzone
https://developer.arm.com/technologies/trustzone
https://www.virustotal.com/
https://blog.talosintelligence.com/2018/05/VPNFilter.html

Warnecke, A., D. Arp, C. Wressnegger, and K. Rieck (2020). Evaluating explanation methods
for deep learning in security. In 2020 IEEE 7th European Symposium on Security and
Privacy (EuroS&P).

Xu, Z., P. Fang, C. L. Liu, X. Xiao, Y. Wen, and D. Meng (2022). DEPCOMM: Graph
Summarization on System Audit Logs for Attack Investigation. In IEEE Symposium on
Security and Privacy (SP).

Xu, Z., Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and G. Jiang (2016, 11). High
Fidelity Data Reduction for Big Data Security Dependency Analyses. In ACM conference
on Computer and Communications Security (CCS).

Yang, F., J. Xu, C. Xiong, Z. Li, and K. Zhang (2023). {PROGRAPHER}: An anomaly
detection system based on provenance graph embedding. In 32nd USENIX Security Sym-
posium (SEC).

Ying, Z., D. Bourgeois, J. You, M. Zitnik, and J. Leskovec (2019). Gnnexplainer: Gener-
ating explanations for graph neural networks. In Neural Information Processing Systems
(NeurIPS).

Yuan, H., H. Yu, S. Gui, and S. Ji (2022). Explainability in graph neural networks: A
taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Yuan, H., H. Yu, J. Wang, K. Li, and S. Ji (2021). On explainability of graph neural
networks via subgraph explorations. In International Conference on Machine Learning
(ICML). PMLR.

zeek (2021). Zeek. https://zeek.org/.

Zengy, J., X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L. Chua (2022). Shade-
watcher: Recommendation-guided cyber threat analysis using system audit records. In
IEEE Symposium on Security and Privacy (SP).

zigbeeflaw (2015). Critical Flaw identified In ZigBee Smart Home Devices. https://goo.gl/
BFBa1X.

135

https://zeek.org/
https://goo.gl/BFBa1X
https://goo.gl/BFBa1X

BIOGRAPHICAL SKETCH

Kunal Mukherjee was born on September 29, 1997, in Kolkata, India, to Mr. Kingsuk

Mukherjee and Dr. Sharmistha Mukherjee. After completing high school at Benjamin Bosse

High School in Evansville, Indiana, he pursued a Bachelor’s degree in Computer Engineering

at the University of Evansville (UE). During his undergraduate years, Kunal developed a

deep interest in cybersecurity and intrusion detection, inspired by various computer security

and cryptography courses. His passion culminated in his senior thesis, which was selected for

presentation at the IEEE MIT Undergraduate Research Technology Conference (URTC) in

2018. While studying at UE, Kunal also interned at Ciholas, Inc. for two and a half years,

where he gained hands-on experience with ultra-wideband (UWB) sensor technology and

motion sensing technology. In 2019, after completing his Bachelor’s degree in three years,

he moved to Dallas, Texas to begin a fully-funded PhD program in Computer Science at

The University of Texas at Dallas (UTD). Within two years, he completed his qualification

exams and became eligible to earn his Master’s degree.

His fascination with cybersecurity and intrusion detection led him to work under the guid-

ance of Dr. Kangkook Jee and Dr. Murat Kantarcioğlu. Since then, Kunal has focused

on developing lightweight, robust, and explainable intrusion detection systems through sys-

tem provenance analysis. His contributions include several published papers and a notable

internship at Zillow Group, Inc., as an Applied Scientist Intern. Now, as he completes his

PhD, Kunal is preparing to embark on a post-doctoral journey.

136

CURRICULUM VITAE

Kunal Mukherjee

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: kunmukh@gmail.com

Educational History:

BS, Computer Engineering, University of Evansville, 2019
MS, Computer Science, The University of Texas at Dallas, 2024
PhD, Computer Science, The University of Texas at Dallas, 2025

IoT Integration, Adversarial Attacks, and Threat Explanations in Provenance-based Intru-
sion Detection Systems
PhD Dissertation
Computer Science Department, The University of Texas at Dallas
Advisors: Dr. Kangkook Jee and Dr. Murat Kantarcıoğlu

Employment History:

Research/Teaching Assistant, The University of Texas at Dallas, August 2019 – present
Applied Scientist Intern, Zillow Group, Inc., May 2024 – December 2024
Computer Engineering Research Intern, Ciholas, Inc, May 2017 – August 2019

Professional Recognitions and Honors:

Graduated summa cum laude, University of Evansville, 2019

Publications:

1. Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen,
Muhyun Kim, Murat Kantarcioglu, and Kangkook Jee (2023).“Evading Provenance-
Based ML Detectors with Adversarial System Actions.” In Proceedings of 32nd USENIX
Security Symposium.

2. Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, Muhyun Kim, Feng Chen,
Murat Kantarcioglu, and Kangkook Jee (2023).“Interpreting GNN-based IDS detec-
tions using provenance graph structural features.” In arXiv.

3. Kunal Mukherjee, JoshuaWiedemeier, Qi Wang, Junpei Kamimura, John Junghwan
Rhee, James Wei, Zhichun Li, Xiao Yu, Lu-An Tang, Jiaping Gui and Kangkook Jee
(2024). “ProvIoT : Detecting Stealthy Attacks in IoT through Federated Edge-Cloud
Security.” In 22nd International Conference on Applied Cryptography and Network
Security.

4. Tianhao Wang, Simon Klancher, Kunal Mukherjee, Joshua Wiedemeier, Feng Chen
Murat Kantarcioglu, Kangkook Jee. (2024).“ProvCreator: Synthesizing Graph Data
with Text Attributes.” Submitted to Proceedings of the 13th International Conference
on Learning Representations.

Professional Service:

Reviewer: ACM Computing Surveys, ACM Transactions on Privacy and Security, and
ICLR ’25
Artifact Evaluation Committee: MobiSys ’23, MLSys ’23, NDSS ’24, and USENIX ’24
External Reviewer: ISC ’23, CCS ’24, and USENIX ’24

Honors and Awards:

Winner: Best Poster Presentation - 05/2019
1st Runner Up: Nominee Outstanding Senior Undergraduate Project - 05/2019
Winner: IEEE MIT Undergraduate Research Technology Conference (URTC) - 10/2018
Award: University of Michigan CSE 2018 Workshop Travel Scholarship - 10/2018
Award: University of Evansville Leadership Academy Gold Medal Recipient - 04/2018
Scholarship: University of Evansville International Scholarship - 05/2016
Scholarship: IVY Tech Valedictorian Scholarship - 05/2016
Scholarship: Anna & Benjamin Bosse Scholarship - 05/2016
Scholarship: William N. Lindsey, Sr Scholarship - 05/2016
Scholarship: University of Evansville Mathematics - 04/2016

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Dissertation Outline

	Background
	System Provenance Overview
	System Provenance Data Schema
	System Provenance Graph
	System Provenance-based Intrusion Detection System (PIDS)
	Graph Neural Network (GNN)-based PIDS
	Explainable ML in Security
	Ground-truth Verification in System Provenance
	Fileless Malware
	Advanced Persistent Threat (APT) Campaigns

	Privacy Preserving Federated PIDS for IoT – ProvIoT
	Problem Statement
	Threat Model
	ProvIoT Overview
	Federated Architecture: Local Brain
	Federated Architecture: Cloud Brain

	Federated Detection in IoT Domain
	Provenance Graph Building and Subgraph (Path) Selection
	Document-to-Neural Embedding Model
	Federated *pids: AutoEncoder

	Evaluation
	Dataset
	Experimental Protocol
	Fileless Malware Detection
	APT Campaign Detection
	Federated Learning Benefits
	ProvIoT Overhead

	Related Works

	Evasive Attack Generation Framework – ProvNinja
	Problem Statement
	Threat Model
	ProvNinja Overview
	Program Profile Generation – Frequency History of Events
	Identifying Conspicuous (or Rare) Events
	Feature Space Evasion
	Evasive System Events (or Gadget) Finder
	Applying Gadget Chains
	Camouflaging Gadgets

	Problem Space Evasion
	Problem Space Constraints
	System Provenance Filter Rules

	Evaluation
	Evaluation Methodology
	Evaluation Datasets
	Dataset Statistics
	Baseline Performance of ML Detectors
	Feature Space Evasion
	White-box and Blind Threat Models
	Problem Space Realization
	Surrogate Dataset Effectiveness
	Transferability Evaluation

	Related Works

	Explaining GNN-based PIDS – ProvExplainer
	Problem Statement
	Threat Model
	ProvExplainer Overview
	Graph Structural Features
	Initial Compromise
	Establishing a Foothold
	Deepen Access
	Lateral Movement
	Look, Learn, and Remain

	Creating Surrogate Decision Trees (DTs) using Graph Structural Features
	Interpreting GNN-based IDS Detections Using Surrogate DTs
	Combining *sota GNN Explanation Methods with ProvExplainer
	Evaluation
	Evaluation Protocols
	Evaluation Tasks
	Evaluation Datasets
	Dataset Statistics
	Graph Structural Feature Evaluation
	Ablation Study
	ProvExplainer vs. *sota Explainers

	Case Studies
	FiveDirections: Browser Extension
	FiveDirections: Copykatz
	Trace: Phishing E-mail

	Future Work and Conclusion
	Future Research Directions
	Real-Time Prevention
	Automated Evasive Attack Generation
	Defense Against Evasive Attacks
	Environmental Dependencies of Evasive Attacks
	Adversarial Manipulation of Graph Features
	Support for Fine-Grained Detection Tasks

	Conclusion

	References
	Biographical Sketch
	Curriculum Vitae

